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Abstract. We develop time series analysis of functional data observed discretely, treating the whole
curve as a random realization from a distribution on functions that evolve over time. The method
consists of principal components analysis of functional data and subsequently modeling the principal
component scores as vector ARMA process. We carry out the estimation of VARMA parameters
using the equivalent state space representation. We derive asymptotic properties of the estimators
and the fits. We apply the method to two different data sets. For term structures of interest rates, this
provides a unified framework for studying the time and maturity components of interest rates under
one set-up with few parametric assumptions. We compare our forecasts to the parametric Diebold
and Li (2006) model. Secondly, we apply this approach to hourly spot prices of electricity and obtain
fits and forecasts that are better than those existing in the electricity literature.
KEY WORDS: Diffusion model, Functional Principal Component, Functional Regression, Market
Returns, Noise contamination, Prediction, Volatility Process, Trajectories of Volatility.

1. Introduction

Functional data analysis (see Ramsay and Silverman (2005) for a comprehensive introduction to
FDA methods) is an extension of multivariate data analysis to functional data. In this framework,
each individual is characterized by one or more real valued functions, rather than by a vector in
R

n. An important feature of FDA is its ability to take into account dependencies between numerical
measurements that describe an individual, especially smoothness, ordering and neighborhood. In
order to deal with irregular measurements and to allow numerical manipulation of functions, FDA
replaces actual observations by a simple functional representation. Spline-based approximation is
the most commonly used method, as it represents each individual by a smooth function. Kernel or
wavelet-based approximations are also used. FDA has been successfully applied to real-life problems
such as climatic variation forecasting, land usage prediction based on satellite images, forecasting
electricity consumption, electrocardiograms etc.

An important tool of functional data analysis (FDA) is functional principal component analysis
(FPCA, see Castro et al. (1986); Rice and Silverman (1991)). Functional processes can be char-
acterized by their mean function and the eigenfunctions of the autocovariance operator. This is
a consequence of the Karhunen-Loève representation of the functional process. We estimate the
components of this representation. Individual trajectories are then represented by their functional
principal component scores, which are available for subsequent statistical analysis. This often leads
to substantial dimension reduction.

Most of the development in FDA has been with independent and identical replications of data.
This permits the use of information from multiple data values to identify patterns. However, in
certain situations, it is unrealistic to assume that the functions across time are independent. We do
need some process structure. One idea to follow up here is to work with the replication principle
implicit in stationary time series, where the values of the process are functions. Besse et al. (2000)
develop an AR(1) model for FDA for forecasting climatic variations. Kargin and Onatski (2008) use
an AR(1) model for forecasting Eurodollar futures. Hörmann and Kokoszka (2010) study weakly
dependent functional processes, but they ignore the issue of smoothing. This is common to a lot of
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work following Bosq (2000) where the theory is developed assuming that the functions are observed
continuously. In practice, however, we only observe the functions at a dense but discrete subset of
the support and need to interpolate smoothly to infer about the whole function. This raises new
questions about the behavior of the estimators. We develop the theory, where the functions follow
a general ARMA(p, q) model and are observed discretely. We start with kernel smoothing, followed
by dimension reduction using FPCA. Based on the time series of the first few significant principal
components, we fit a VAR or VARMA model. We provide techniques for estimation of the model
parameters and selection of the optimal model.

The paper is organized as follows: In section 2 we provide some background information on
principal components analysis of functional data, term structures of interest rates and electricity
spot markets. In section 3 we present our main set-up and methodology for time series analysis of
functional data and some related results. In section 4 we propose the estimation techniques. In
section 5 we describe two applications, namely forecasting and regression. We derive asymptotic
properties of the estimators, fits and forecasts in section 6. We present the analysis of real data of
interest rates and electricity spot prices in section 7 and finally we conclude in section 8.

2. Background

Consider a sample of n smooth random trajectories (fi(t))t∈T for i = 1, · · · , n generated from
a process f . Throughout we assume that f is an element of the Hilbert space H := L2(T ) endowed

with the inner product 〈f, g〉H =
∫
T
f(t)g(t)dt and the norm ‖f‖ =

√
〈f, f〉H <∞ a.s.. The observed

measurements are available on a dense grid of support points tij on the domain T = [a1, a2] with
additive white noise error Wij which is independent of the underlying process. The measurements
are for i = 1, · · · , n and j = 1, · · · , m:

f̃i(tij) = fi(tij) +Wij with E(Wij) = 0,Var(Wij) = σ2. (2.1)

2.1. Principal Components Analysis of Functional Data. We represent the smooth functional
f in terms of its decomposition into functional principal components, a common approach in FDA.
For the domain T , setting

Gf(s, t) = Cov(f(s), f(t)), E(f(t)) = µf(t), s, t ∈ T , (2.2)

the functional principal components are the eigenfunctions of the auto-covariance operator Gf : H 7→
R, a linear operator on the space H, that is given by

Gf(g)(s) =

∫

T

Gf (s, t)g(t) dt.

We denote the orthonormal eigenfunctions by φk, with associated eigenvalues λk for k = 1, 2, . . . ,
such that λ1 ≥ λ2 ≥ · · · and

∑
k λk < ∞. The Karhunen-Loève theorem (see Rice and Silverman

(1991)) provides a representation of individual random trajectories of the functional f , given by

f(t) = µf (t) +

∞∑

k=1

ξkφk(t), t ∈ T , (2.3)

where the ξk are uncorrelated random variables that satisfy

ξk =

∫
(f(t)− µf(t))φk(t) dt, Eξk = 0, Var(ξk) = λk. (2.4)

Under the data generating mechanism in (2.1), one has with indicator function I(·)
E(f̃i(t)) = µf(t), Cov(f̃i(s), f̃i(t)) = Gf (s, t) + σ2I(s = t). (2.5)

This implies that the smooth mean function µf and the smooth covariance surface Gf can be con-
sistently estimated from available data by pooling the sample of n trajectories and smoothing the
resulting scatterplot. The exception for targeting points on Gf with s = t in (2.5) is necessitated
by the presence of W . This does not pose a problem, since it follows from the smoothness of the
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surface Gf that the areas of Gf (s, t), for which s = t, can still be consistently estimated. Well-known
procedures exist to infer eigenfunctions and eigenvalues (Rice and Silverman (1991); Müller et al.
(2006)).

Processes f are then approximated by substituting estimates and using a judiciously chosen finite
number K of terms in sum (2.3). This choice can be made using one-curve-leave-out cross-validation
(Rice and Silverman (1991)), pseudo-AIC criteria (Yao et al. (2005)) or a scree plot, a tool from mul-
tivariate analysis, where one uses estimated eigenvalues to obtain a prespecified fraction of variance
explained as a function of K or looks for a change-point.

The above procedure is also known in numerical analysis under the acronym proper orthogonal

decomposion and as such it is used to price and hedge financial derivatives on forward curves; see
Hepperger (2010) for examples from the energy market and further references.

2.2. Term Structure Modeling. Term structures of interest rates, also known as yield curve, rep-
resent the relationship between spot rates of zero-coupon securities and their term to maturity. This
interest rate pattern is used to discount cash flows appropriately. The yield curve is also changing
over time. Yield curves are used by fixed income analysts, who analyze bonds and related securities,
to understand conditions in financial markets and to seek trading opportunities. Economists use the
curves to understand economic conditions. Term structure modeling is a very interesting and active
field. There are two popular approaches to term structure modeling. The no-arbitrage tradition
focuses on perfectly fitting the term structure at a point in time to ensure that no arbitrage possibil-
ities exist, which is important for pricing derivatives. The equilibrium tradition focuses on modeling
the dynamics of the instantaneous rate, typically using affine models, after which yields at other
maturities can be derived under various assumptions about the risk premium. Prominent contribu-
tions in the no-arbitrage vein include Hull and White (1990) and Heath et al. (1992), and prominent
contributions in the affine equilibrium tradition include Vasicek (1977), Cox et al. (1985), and Duffie
and Kan (1996). Diebold and Li (2006) use factor models imposing structure on the factor loadings
to distill the entire yield curve, period-by-period, by regression onto a three-dimensional parameter
that evolves dynamically. This is the closest one comes to simultaneous treatment of maturity and
time evolution of the term structure. We propose an FDA analysis of the yield curve, treating the
whole curve over different maturities as a random realization from a distribution on functions. Our
proposed nonparametric approach requires no assumptions from the yield curve beyond smoothness
and integrability in contrast to currently used approaches which include parametric components and
assumptions. Our analysis provides a unified framework for studying the time and maturity compo-
nents of interest rates under a set-up without too many parametric assumptions. This gives better
modeling, data visualization and understanding of the interest rate process.

2.3. Electricity Hourly Spot Rates. In the beginning of the 1990s a liberalization of the elec-
tricity and gas markets started, resulting in the emergence of markets for spot prices and derivative
products in numerous countries and regions spread over the world. Wolak (2000) gives a description
of worldwide electricity market organization after deregulation. Johnson and Barz (1999) provides a
comparative study of several electricity markets. These markets are in many ways distinct in nature
and definition compared to what we find in the more classical commodity markets as oil, coal, metals
and agriculture. Hence, new and challenging modeling problems appear. Electricity has very limited
storage possibilities. Electrical power is only useful for practical purposes if it can be delivered during
any period of time. This is why electricity has been called a flow commodity. Deregulated power
markets have market mechanisms to balance supply and demand, where electricity is traded in an
auction system for standardized contracts. All contracts guarantee the delivery of a given amount
of power for a specified future time period.

Electricity spot prices have a strong periodicity. This can be explained from a microeconomic
viewpoint by looking at the market price of electricity as an equilibrium price based on supply and
demand curves. Since the demand is very inelastic, the marginal costs of the supply side determine the
price to a large extent. If the total load is low, the power plants with the lowest variable production
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costs are used, if the total load is high, gas or oil fired plants with high fuel costs are additionally
running. The periodicity of the total load is responsible for the periodicity of the electricity prices.
The total load has a random component, depending on short term weather conditions and other
uncertain parameters, but it also has a clear predictable part, and so do the prices for electricity.

There is a lot of literature on the time series dynamics of daily average prices of electricity, see
eg. Pilipovic (1998). However the models developed for average prices cannot be directly applied
to describe the dynamics of the hourly prices. Agents in electricity markets are exposed to hourly
variation. Prices need to be quoted on an hourly basis for the following day. Companies that use
electricity in a certain profile during the day have demand for contracts that deliver only in a few hours
of the day. Other applications include power risk management, contract structuring and derivative
pricing, see Eydeland and Wolyniec (2003). Longstaff and Wang (2004) study the day-ahead hourly
risk premium, calculated as the difference between the day-ahead price and the expected real time
price. Szkuta et al. (1999) apply neural networks to model the dynamics of intraday prices. Huisman
et al. (2007) propose a panel framework for modeling the characteristics of hourly electricity prices in
day-ahead markets. Li and Flynn (2004) examine hourly rates of price change in fourteen deregulated
markets. Knittel and Roberts (2005) fit a range of traditional financial models and less conventional
electricity price models to hourly time series of real-time Californian electricity prices.

Electricity spot prices cannot be treated as a traditional time series model. Time series models
assume that the information set is updated by moving from one observation to the next in time.
This assumption is not valid for hourly electricity spot prices. Hourly prices for the whole of the
next day are determined at the same time, when agents submit their bids and offers for delivery of
electricity on the previous day. Therefore, the information set is constant during the day and updated
every day. Additionally, a time series approach would require too many parameters to model all the
periodic components and one runs into the curse of dimensionality.

The FDA approach is very appropriate in this situation since one can pick up these periodic
structures with a few data-driven basis functions. It is inappropriate to assume that the pattern for
the individual days are independent. Even after taking into account the daily periodicity, there is a
dependence between the days. Hence ARMA modeling of FDA is a suitable tool for this application.

It should be noted that electricity prices also exhibit extreme spikes and short periods of extreme
activity. See Bernhardt et al. (2008) and Weron et al. (2004), respectively, for treatment of these
issues, in the context of daily spot prices. Garćıa et al. (2011) addresses the extreme behavior in the
context of intraday spot prices. Their analysis shows, in particular, that no finite variance exists, so
that the Hilbert space approach used in this paper lacks foundation. It has, however, been shown,
that standard L2-procedures can be applied also in this heavy-tailed setup and give correct answers;
cf. Davis (1996) and Mikosch et al. (1995) and references therein.

3. Time Series of Functional Data

Coming back to the situation as described in (2.1), we assume that the series of functions follows
the ARMAH(p, q) model with mean µ ∈ H:

fi(·)− µ = θ1(fi−1(·)− µ) + · · ·+ θp(fi−p(·)− µ) + ǫi(·). (3.1)

where ǫi(·) = ηi(·) + ψ1ηi−1(·) + · · · + ψqηi−q(·), and ηi(·) is H white noise. θ1, · · · , θp are linear
functions. Combining (3.1) and (2.3) we have,

∞∑

k=1

ξkiφk(·) + µf − µ = θ1(

∞∑

k=1

ξki−1φk(·) + µf − µ) + · · ·+ θp(

∞∑

k=1

ξki−pφk(·) + µf − µ) + ǫ(·). (3.2)

Using linearity of θ1, · · · , θp, this implies,

∞∑

k=1

ξkiφk(·)+µf−µ =

∞∑

k=1

ξki−1θ1(φk(·))+θ1(µf−µ)+· · ·+
∞∑

k=1

ξki−pθp(φk(·))+θp(µf−µ)+ǫ(·). (3.3)
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Combining all the terms involving µ and µf into µ̃ and using vector notation, we have:

Φ(·)Ξi = µ̃+ θ1(Φ(·))Ξi−1 + · · ·+ θp(Φ(·))Ξi−p + ǫ(·). (3.4)

where Φ = (φ1, φ2, · · · ) and Ξ = (ξ1i, ξ2i, · · · )T . Since the columns of Φ are orthonormal, we can
premultiply equation (3.4) by ΦT to get:

Ξi = ΦT µ̃+ ΦT θ1(Φ(·))Ξi−1 + · · ·+ ΦT θp(Φ(·))Ξi−p + φT ǫ(·). (3.5)

This implies a VARMA(p, q) structure on the vector of principal component scores Ξi.

4. Estimation

4.1. Inferring the Functional Process. At the core of the estimation procedure is the principal
analysis of random trajectories (PART), applied to the data f̃ij from (2.1), which is an algorithm
to obtain mean and eigenfunctions, as well as FPC scores, from densely sampled functional data,
as described in Müller et al. (2006). The smoothing steps in this algorithm are implemented with
weighted local linear smoothing as in Fan and Gijbels (1996), which works well in practice; alternative
smoothing methods can also be used. In order to estimate the overall mean function µf , we pool

all available data into one big scatterplot {(tj, f̃ij), i = 1, . . . , n, j = 1, . . . , m}, and then obtain the

nonparametric regression of f̃ versus t by local linear smoothing. Formally, one finds the minimizers
β̂0(τ), β̂1(τ) of

n∑

i=1

m∑

j=1

κ1

(
tj − τ

bf

)
{f̃ij − β0(τ)− β1(τ)(tj − τ)}2, (4.1)

where bf is the smoothing bandwidth, chosen in practice by (generalized) cross-validation, and κ1 is
a kernel function, which is required to be a square integrable and compactly supported symmetric
density function, with finite variance and absolutely integrable Fourier transform. Then one sets
µ̂f(τ) = β̂0(τ) for which one has an explicit representation that is linear in Wj (Fan and Gijbels
(1996)).

Analogously, surface data are smoothed by fitting local planes by weighted least squares. Specif-
ically, estimation of the covariance surface Gf is based on the collection of all available pairwise

“empirical covariances” Gi(tj1, tj2) = (f̃ij1 − µ̂f(tj1))(f̃ij2 − µ̂f(tj2)), assembling these into a two-
dimensional scatterplot {[(tj1, tj2),Gi(tj1 , tj2)], i = 1, . . . , n, j1, j2 = 1, . . . , m}, and fitting a two-
dimensional smoother to obtain the nonparametric regression of Gi(tj1, tj2) versus (tj1, tj2). Formally,
one minimizes

n∑

i=1

∑

1≤j1 6=j2≤m

κ2

(
tj1 − τ1
hf

,
tj2 − τ2
hf

)
× (4.2)

{Gi(tj1 , tj2)− [β0(τ1, τ2) + β1(τ1, τ2)(τ1 − tj1) + β2(τ1, τ2)(τ2 − tj2)]}2

with respect to β̂0(τ1, τ2), β̂1(τ1, τ2), β̂2(τ1, τ2) and defines Ĝf (τ1, τ2) = β̂0(τ1, τ2). In (4.2), κ2 is
a kernel function, which is required to be a square integrable and compactly supported radially
symmetric bivariate density function, with finite variance and absolutely integrable Fourier transform.
The smoothing bandwidth hf can again be chosen by (generalized) cross-validation.

We note that the diagonal terms (j1, j2), j1 = j2, are missing in the summation over j1, j2 in (4.2).

This omission is motivated by the dependence structure of the targets f̃ij. Due to the assumed
smoothness of the covariance surface Gf , the diagonal, on the other hand, is not essential in the
surface estimation step, and can be omitted from the data that are used to construct the surface,
without incurring any asymptotic penalty.

Once mean and covariance functions of the functional process f have been determined, a next step
is the estimation of the (eigenvalue/eigenfunction) pairs, which are defined as the solutions of the

eigen-equations
∫
Gf (s, t)φk(s)ds = λkφk(t), substituting the estimated covariance surface Ĝf for

Gf . Solutions (λ̂k, φ̂k) are obtained by numerical eigenanalysis, based on an initial discretization step,



8 TIME SERIES OF FUNCTIONAL DATA

under orthonormality constraints for the eigenfunctions. Positive definiteness of the corresponding
covariance surface can be guaranteed by a projection of the initial estimate Ĝf on a positive definite

version G̃f , as described in Yao et al. (2003).
In a last step, the PART algorithm yields estimates of the individual FPC scores. Motivated by

(2.4), these are implemented as

ξ̂ik =

m∑

j=2

(f̃ij − µ̂f(tij))(tij − tij−1)φ̂k(tij), i = 1, . . . , n, k = 1, 2, . . . . (4.3)

Individual trajectories can then be represented by an empirical version of the Karhunen-Loève
expansion (2.3), for appropriate K,

f̂
(K)
i (t) = µ̂f(t) +

K∑

k=1

ξ̂ikφ̂k(t). (4.4)

4.2. VARMA modeling of the principal component scores. The estimated principal compo-
nent score vectors ξ̂i = (ξ̂i1, · · · , ξ̂iK) form a vector time series of length n. The infinite dimension of
the functional data has been reduced to a finite dimension K. We fit Vector Autoregressive Moving
Average(VARMA) models of order p, q to the finite dimensional time series of estimated principal

component scores ξ̂i.
A VARMA(p, q) process is defined in vector notation as:

ξi = µ+ θ1ξi−1 + · · ·+ θpξi−p + ǫi + ψ1ǫi−1 + · · ·+ ψqǫi−q, i = p+ 1, · · · , n,

which can be further simplified by adopting the representation of a lag polynomial

Θ(L)ξi = µ+Ψ(L)ǫi, i = p + 1, · · · , n. (4.5)

Here µ and ξi, ǫi, for i = 1, · · · , n are vectors of dimension K and θ1, · · · , θp, ψ1, · · · , ψq are K ×K
matrices.

Note that in the above model each ξik depends not only on its own history but also on other series’
history (cross dependencies). This gives us several additional tools for analyzing causality as well as
feedback effects.

A basic assumption in the above model is that the residual vectors follow a multivariate white
noise, i.e.

E(ǫi) = 0 (4.6)

E(ǫiǫ
′
j) =

{
Σǫ if i = j
0 if i 6= j

(4.7)

The coefficient matrices must satisfy certain constraints in order that the VARMA-model is station-
ary. It is required that roots of

det(I − θ1z − · · · − θpzp) = 0 (4.8)

lie outside the unit circle. Here I is the identity matrix. For more details on VARMA models see
Chapter 11 of Brockwell and Davis (2009).

Model selection and forecasts can be done conveniently by using the equivalent representation
of VARMA using state space models proposed by Akaike (1976). For details consider Aoki and
Havenner (1991). The main advantage of the state space approach is its capability to find the best
model in terms of the Akaike information criterion.

AIC = log |det(Σ̃ǫ,p,q)|+ 2s/n (4.9)
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Here s is the number of estimated parameters, n is the sample size and Σ̃ǫ,p,q is the estimated
covariance matrix obtained as:

Σ̃ǫ,p,q =
1

n

n∑

i=p+1

ǫ̂i,p,qǫ̂
′
i,p,q

where ǫ̂i,p,q is the estimated error vector for the i-th data vector after fitting a VARMA(p, q) model.

4.3. VAR modeling of the principal component scores. If the MA part of the VARMA model
has coefficients ψ1 = . . . = ψq = 0, the VARMA model reduces to a VAR (vector autoregressive)
model. A VAR(p) model is defined, in vector notation, as

ξi = µ+ θ1ξi−1 + · · ·+ θpξi−p + ǫi,

which can be further simplified by adopting the representation of a lag polynomial leading to a VAR
version of (4.5)

Θ(L)ξi = µ+ ǫi.

The same condition (4.8) for stationarity holds as in the VARMA model. Estimation can be carried
out by single equation least squares. See Hamilton (1994) for further details on VAR processes.

A linearly transformed finite order VAR(p) process, in general, does not admit a finite order VAR
representation but becomes a VARMA process, see Chapter 11.6 of Lütkepohl (2005). Because
transformations of variables are quite common in practice, this result is a powerful argument in favor
of the more general VARMA class. However, often, as in our data sets, the MA order q of the optimal
VARMA model selected by AIC is zero. In such cases, it is sufficient to fit a vector autoregressive
(VAR) models of order p to the finite dimensional time series of estimated principal component

scores ξ̂ik. Estimation and model specification of the VAR class is in general less complicated than
of VARMA models.

For the VAR(p) model, the number of estimated parameters s in equation (4.9) equals K(1 +
pK) +K(K + 1)/2. |Σ̃ǫ,p| is the estimated covariance matrix.

5. Practical Applications

5.1. Forecasting. Our primary aim is forecasting the curve for a future date based on the infor-
mation available upto a certain point of time. The final VARMA(p, q) model, chosen in section 4.2,

is used to produce model forecasts ξ̃ik of future principal component scores. Plugging these into

equation (4.4) we obtain the forecasts
̂̃
fi(t) of the original process f .

̂̃
fi(t) = µ̂f(t) +

K∑

k=1

ξ̃ikφ̂k(t). (5.1)

Diebold and Li (2006), henceforth referred to as DL, use parametric functions involving variations
of Nelson-Siegel exponential components to model the yield curve and then use univariate AR(1)
models componentwise to estimate and forecast the factors. This method performs very well for
forecasting the yield curve since these parametric functions are specifically designed for this situation.
However, the problem of forecasting curves can arise in a lot of other situations, as in our electricity
spot rate example. In such cases the DL method fails completely. We need the set of basis functions
to be able to adapt to the data to be of broad and general use. In particular, the basis functions we
use are eigenfunctions of the covariance of the dataset. Hence they can be used in any general setup.

Kargin and Onatski (2008) use predictive factors, similar to simultaneous linear predictions and an
alternative to canonical correlations, together with an AR(1) model to predict the term structure of
Eurodollar futures. It is not clear if and how the canonical correlation idea can be extended beyond
AR(1). Also, in the empirical application presented in their paper, this method performs worse than
the DL method.
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5.2. Correlation and regression involving long and short term interest rates. The corre-
lation between long and short term interest rates is a matter of debate among economists, see eg
Brown and Schaefer (1994). The most powerful and widely accepted theory regarding the relation-
ship between short- and long-term interest rates is the expectations theory of the term structure.
Under the expectations theory, long-term interest rates are described as functions of the weighted
averages of expected future short rates plus term premia. According to the theory, therefore, it can
be surmised that, a rise (fall) in current short rates will lead to an increase (decrease) in long-term
rates. In fact, this is the situation that is usually observed in the real world. However, there are
occasional exceptions: For example, in the USA, the Federal Reserve increased the Federal funds rate
by 1 percentage point in May 1994, but the interest rates of long maturities fell after that. In the
UK, the Bank of England decided to decrease the repo rate by 0.25 percentage points in February
2003, but relatively long-maturity interest rates rose compared with those of the previous day.

There is no clear consensus among researchers in regard to how long-term rates will react to changes
in short-term rates. Romer and Romer (2000) argue that a contractionary monetary policy should
be followed by a fall in long rates because the rate of inflation is expected to decline in the future.
They explain that a positive correlation between short and long rates, which is typically observed in
the real world, is due to the Federal Reserves information advantage over the public in forecasting
inflation. On the other hand, Campbell (1995) asserts that such a usually observed phenomenon
stems from bond-market participants increasing requirement for excess return on long-term bonds.
Ellingsen and Söderström (2001) show that, if market participants consider an unexpected change in
the Federal funds rate as the Federal Reserves reaction to economic shocks, then interest rates of all
maturities will move in the same direction. In contrast, if a change in short-term rates is regarded as
being caused by an unexpected shift in exogenous parameters, such as the relative weight on output
variability, the Federal funds rate and the interest rates of sufficiently long maturities will move in
opposite directions.

We describe a method to quantitatively compute the relation between short and long term interest
rates by extending the functional regression techniques of Müller et al. (2011) to the time series
setting. Let the short term interest rate, say, up to three months maturity, be denoted by fXi(τ) and
the long term interest rate for maturities above three months, be denoted by fY i(τ). We are interested
in predicting fY i+1 given the entire past (fX1, fY 1, · · · , fXi, fY i) and fXi+1. As before, i = 1, · · · , n
denotes the time and τ denotes the maturity. We carry out a functional principal component analysis
as described in section 2.1 of the two series separately. The Karhunen-Loève expansions of the two
series in terms of the principal component scores and eigenfunctions as described in section 4.1 are
given by:

fXi(t) = µX(t) +

KX∑

k=1

ξXikφ
X
k (t), (5.2)

fY i(t) = µY (t) +

KY∑

k=1

ξYikφ
Y
k (t).

For each i = 1, · · · , n the vector (ξXi , ξ
Y
i )

T = (ξXi1 , · · · , ξXiKX
, ξYi1, · · · , ξYiKY

)T is now modeled as a
VARMA process

θ(L)

(
ξXi
ξYi

)
= Ψ(L)

(
ǫXi
ǫYi

)
(5.3)

where (ǫXi , ǫ
Y
i )

T are independent vectors with mean 0 and common covariance matrix Σ. The pre-
dictor of ξYi+1 given (ξX1 , ξ

Y
1 , · · · , ξXi , ξYi , ξXi+1) is obtained by substituting in (5.3) the least squares

regression prediction of ǫYi+1 on ǫXi+1, with regression coefficient βǫ. Subsequently these are used in
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(5.2) to get the functional regression:

Ê(fY i+1|fX1, fY 1, · · · , fXi, fY i, fXi+1) (5.4)

= µY (t) + g(fX1, fY 1, · · · , fXi, fY i) (5.5)

+

∫
(fXi+1(s)− µX(s)) β(s, t)ds, (5.6)

where the regression surface

β(s, t) =
∞∑

k,m=1

βǫ(k,m)φX
k (s)φ

Y
m(t) (5.7)

and g is a linear function of the past.

6. Asymptotics

We derive some consistency results for eigenfunctions, eigenvalues, FPC scores and fitted trajec-
tories. All proofs and details regarding the assumptions (M1)-(M8) can be found in the Appendix.
In the following, the observation interval T = [a1, a2] ⊂ (0, T ] .

Recollecting that we estimate the overall mean trajectory µf in (4.1) with bandwidth bf , and
the covariance surface Gf (2.2) in (4.2) with bandwidth hf , we obtain for the estimation of these
key constituents the following result. All convergence results in the following are for n → ∞ and
∆ = sup |tj − tj−1| → 0.

Theorem 1. Assuming (M1)-(M4), we have

sup
t∈T

|µ̂f(t)− µf(t)| = OP (
1√
nbf

), (6.1)

sup
s,t∈T

|Ĝf(s, t)−Gf(s, t)| = OP (
1√
nh2f

). (6.2)

This result provides justification for the mean and covariance function estimates. Next, let I′ denote
the set of indices of the eigenfunctions φk corresponding to eigenvalues λk of multiplicity one. As a
consequence of the following theorem, we obtain consistency for the estimation of eigenvalues λ̂k and
eigenfunctions φ̂k for k ∈ I′, justifying the use of these estimates in the subsequent analysis.

Theorem 2. Assume (M1)-(M4). Then

|λ̂k − λk| = OP (
1√
nh2f

) (6.3)

‖φ̂k − φk‖H = OP (
1√
nh2f

) k ∈ I′ (6.4)

sup
t∈T

|φ̂k(t)− φk(t)| = OP (
1√
nh2f

), k ∈ I′. (6.5)

One is also interested in the consistency of estimated principal component scores ξi and estimates

f̂
(K)
i (t) as in (4.4) of individual trajectories (2.3).

Theorem 3. Assuming (M1)-(M6),

sup
1≤k≤K

|ξ̂ik − ξik| P−→ 0 (6.6)

sup
t∈T

|f̂ (K)
i (t)− fi(t)| P−→ 0. (6.7)

The following result is regarding the forecast
̂̃
fi(t) as in (5.1) using the fitted ARMA(p, q) model.
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Theorem 4. Assuming (M1)-(M6), if the distribution of the innovations is Normal, then the fore-

casted ξi are asymptotically normal with variance Σǫ. The forecasted functions (φ1, · · · , φK)
T (

̂̃
fi−

fi) are asymptotically normal with variance Σǫ.

7. Empirical Examples

7.1. Data. Euribor (Euro Interbank Offered Rate) is the rate at which Euro interbank term deposits
are being offered by one prime bank to another within the European Monetary Union. Historical
data is available at www.euribor.org The choice of banks quoting for Euribor is based on market
criteria. These banks are of first class market standing and they have been selected to ensure that
the diversity of the euro money market is adequately reflected, thereby making Euribor an efficient
and representative benchmark. Thomson Reuters has been chosen as the screen service provider
responsible for computing and also publishing Euribor. A representative panel of banks provide
daily quotes of the rate, rounded to two decimal places, that each panel bank believes one prime
bank is quoting to another prime bank for interbank term deposits within the euro zone. Panel
banks contribute for fifteen maturities: one, two and three weeks, and then for every month from
one to twelve. Thomson Reuters, for each maturity, eliminates the highest and lowest 15% of all the
quotes collected. The remaining rates are averaged and rounded to three decimal places. After the
calculation has been processed at 11:00 a.m. CET, Thomson Reuters instantaneously publishes the
Euribor reference rate, which is made available to all its subscribers and to other data vendors. At the
same time, the underlying panel bank rates are published on a series of fifteen composite pages which
display all the rates by maturity. Since its launch, Euribor has become a reality on the derivatives
markets and is the underlying rate of many derivatives transactions, both, over-the-counter and
exchange-traded.

The electricity data was obtained on day-ahead spot prices from European Energy Exchange
(EEX). EEX is an exchange under public law with location in Leipzig. EEX operates the spot
trading for power with physical delivery on the day to follow and the futures market. With high
trading volumes, the EEX is one of the largest and most important power exchanges in Europe.
Clearing prices resulting at the EEX markets are also used as reference prices for other electricity
contracts in Germany and elsewhere in Europe. The EEX operates a day-ahead market for hourly
and block electricity contracts. Hourly power contracts are traded daily for physical delivery in the
next days 24-hour period (midnight to midnight). Each morning, the players submit their bids for
purchasing or selling a certain volume of electricity for the different hours of the following day. Once
the spot market is closed for bids, at noon each day, the day-ahead price is derived for each hour
next day.

7.2. Programs. The initial fitting of functional data to obtain mean, covariance and principal com-
ponents is done by employing the PACE package for functional data analysis written in Matlab. We
use the Gaussian kernel. The package is available at

http://anson.ucdavis.edu/∼wyang/PACE/

VAR model fitting and diagnostics is done using the econometrics toolbox in Matlab.
VARMA and related state space model computations are done using the Dynamic Systems Esti-

mation (dse) package in R available at

http://cran.r-project.org/web/packages/dse/index.html.

It should be noted that in all the actual data applications, the models chosen by AIC criterion had
the MA degree zero.

7.3. Analysis of Euribor Data. We separate the data into years because for long time horizons
the stationarity assumption of the time series may not be valid. We present the results for the years
1999 and 2007. Together they are representative of the other years. In Figure 1, we present the raw
data for the two years. For each weekday of the year we have data of dimension 13 (for 1999) and
15 (for 2007) and we think of it as a time series of functions. The maturities, smoothing bandwidth
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choices, number of significant principal components and degree of VARMA models are presented in
table 1. The summary statistics for the different maturities are given in tables 2 and 3. The mean
functions, covariance surfaces and significant eigenfunctions for both years are presented in Figures
2-4.

We present the distance between the observed and estimated functions in Figure 5. Distance is
defined as: ∫

(fi(t)− f̂
(K)
i (t))2dt

It is seen that the estimation based on FDA performs comparably with the DL method which
was specifically designed for the specific purpose of forecasting the term structure of interest rates.
In Figure 6 we present the distance between the observed functions and the predictions based on
VARMA models for the principal component scores. In this case, at least for the year 1999, the
FDA method outperforms the DL method. In general, the errors from the FDA method have smaller
variability than those from the DL method.

For regression, the smoothing bandwidth choices and number of significant principal components
for different maturity horizons, that is, short and long, for the two years are presented in table 4. In
that table we also present the degree of VARMA models and regression R2. The regression coefficient
of ǫY on ǫX is (0.9025 1.6098) for 1999 and (-1.0037 3.5752) for 2007. In figure 7 we present the
regression surface. The surface is far from flat which shows that the relation between short and long
term interest rates cannot be expressed as one number, but depends in an involved way on the short
term rates of different maturities. The surface is similar for the two years and doesn’t vary too much
over the y-axis. This implies that the relationship is stable in time and does not vary much with the
different maturities of the long term rates. In figure 8 we present the distance between the observed
and predicted functions of long term interest rates. Prediction based on time series and regression
on the short term interest rates far outperforms the prediction based on only time series of long term
rates.

7.4. Analysis of Energy 2008 Data. Data are hourly spot prices for weekdays from Jan 1 to
Sept 30 2008. The number of days is n = 196. As noted in section 2, electricity prices over long
time horizons exhibit nonstationarity. We choose a period that looks like a stationary period from
time series plots of the raw data and the principal component scores. The price is observed in
one hour intervals over the whole day, so τ = 1, 2, · · · , 24. The data are of dimension 24 and
we think of it as a time series of functions representing spot prices over each day. In figure 9 we
present the raw data. The summary statistics for the different hours are given in table 3. The
smoothing bandwidth chosen for the mean is 2.75 hours and for the covariance surface is 1.0698
hours. The number of significant principal components is chosen to be 4. The estimated smooth
mean, covariance surface and eigenfunctions are presented in Figures 9-10. In figure 11 we present
the distance between the observed and estimated functions and the distance between the observed
functions and the predictions based on VARMA(1,0) models for the principal component scores. In
figure 12 we present the observed, estimated and predicted curves for 12 randomly chosen days.

The measure we use for evaluating the model is the percentage of variance explained compared to
the simple invariant estimate given by the overall mean. This is like an R2 criterion and is defined
as:

1− (yij − ŷij)
2

(yij − ȳ)2

This value equals 0.9503 for the fitted model and equals 0.7713 for the forecast using VARMA(1,0).
We compare the forecasts with the AR and iterated Hseih-Manski (IHMAR) models as described

in Weron and Misiorek (2008). The basic AR model considered there looks upon the data as a single
time series and involves as predictors the prices for the same hours on the previous two days, the
previous week, the minimum of the previous day’s 24 hourly prices and a dummy variable for Monday.
The IHM estimator is an iterated version of an adaptive maximum likelihood estimator for ordinary
regression. Cao et al. (2003) suggest that this estimator should perform well when the distribution
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of the model errors is far from normal. The forecasts are compared using the weekly-weighted mean
absolute error(WMAE) defined as:

WMAE =

∑5
i=1

∑24
j=1 | yij − ŷij |∑5

i=1

∑24
j=1 yij

. (7.1)

The WMAE for the 38 weeks are displayed in table 6 for the three models: pure AR, FDA and
IHMAR. The summary statistics are presented in the bottom rows. These include the mean WMAE
over all weeks, the number of times a given model was best and the mean deviation from the best
model (m.d.f.b.) in each week. The latter measure indicates which approach is closest to the optimal
model on the average and is defined as:

m.d.f.b. =
1

T

T∑

t=1

(Ei,t −Ebestmodel,t), (7.2)

where i ranges over all models, T is the number of weeks and E is the WMAE.
It is seen that IHMAR does not give best forecast for any week. This model is supposed to perform

well if the data is far from normality. Since we have chosen a stationary period for our analysis, this
is almost always dominated by the simple AR model. The FDA method does not dominate the AR
model, but performs better on the average according to all three summary statistics.

8. Future directions

We have developed the method for studying the time series of functional data. It should be
straight forward to extend this method to incorporate seasonality. Further work needs to be done for
extensions to nonstationary time series eg. change point, regime switching, heavy-tailed innovations
etc. One can use the methods of Aneiros-Pérez and Vieu (2008) and Damon and Guillas (2002) to
incorporate the effects of covariates.

Appendix

We begin by listing some assumptions, on moments of f̃ij (2.1) and smoothing bandwidths bf and
hf as used in (4.1) and (4.2). Throughout we consider ∆ → 0 and n→ ∞.

(M1) supj E[f̃ij ]
4 <∞

(M2) bf → 0, nb4f → ∞, limsupnb
6
f <∞,

hf → 0, nh6f → ∞, limsupnh
8
f <∞,

limsup1/2
n bf∆ <∞, limsup1/2

n h2f∆ <∞.
(M3) The kernel functions κ1 and κ2 are compactly supported kernel functions of order (0,2) and

(0,0,2) respectively as defined in equation (25) of Yao et al. (2005). The Fourier transforms
of κ1(u) and κ2(u, v), namely, ζ1(t) =

∫
e−iutκ1(u)du and ζ2(t, s) =

∫
e−(iut+ivs)κ2(u, v)dudv

are absolutely integrable. That is,
∫
|ζ1(t)|dt <∞ and

∫ ∫
|ζ2(t, s)|dtds <∞.

Let Fk
i be the σ-algebra of events generated by the random functions {fj(t), t ∈ T , i ≤ j ≤ k} and

let L2(F
k
i ) denote the collection of all second order random variables which are Fk

i measurable. The
stationary process fi(.) is called ρ-mixing (Kolmogorov and Rozanov(1960)) if

sup
U∈L2(F0

−∞
),V ∈L2(F∞

k
)

Cov(U, V )

Var1/2(U)Var1/2(V )
= ρ(k) → 0 as ρ→ ∞.

(M4) The process fj is ρ-mixing with
∑
ρ(l) <∞.

Proof of Theorem 1: The proof borrows arguments from the proofs of Lemma 1,2 and Theorem 1
of Yao et al. (2005). Assumptions (M1)-(M3) ensure that proper versions of the above mentioned
Theorem apply here. The difference of the present paper from the setup in Yao et al. (2005) is that
the functions are no longer independent, but come from an ARMA process. Assumption (M4) allows
us to suitably modify the last step of Lemma 1 to bound the variance term under this dependence
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structure. Compare to Masry and Fan (1997) on local polynomial estimation of regression functions
for mixing processes. �.

Proof of Theorem 2: The proof is analogous to that of Theorem 2 of Yao et al. (2005). �

Further assumptions are needed for the remaining results. For each j ≥ 0, define δfj = 1
2
min{|λl−

λj | : l 6= j}, and Λδfj
= {z ∈ C : |z − λj| = δfj }, where C are the complex numbers. Furthermore,

define Aδfj
= sup{‖Rf(z)‖F : z ∈ Λδfj

}, where Rf(z) = (Gf − zI)−1 is the resolvent of operator Gf

and ‖ · ‖F is an operator norm, defined on the separable Hilbert space F generated by the Hilbert-
Schmidt operators on H , endowed with the inner product 〈T1, T2〉F =

∑
j〈T1uj, T2uj〉H and the norm

‖T‖2F = 〈T, T 〉F , where T1, T2, T ∈ F , and {uj : j ≥ 1} is any complete orthonormal system in H .
Then we assume

(M5) K = K(n) → ∞. and
∑K

j=1(δ
f
jAδfj

supt∈[0,T ] |φj(t)|)/(
√
nh2f −Aδfj

) → 0.

(M6)
∑K

j=1 supt∈[0,T ] |φj(t)| = o(min{√nbf ,
√
∆−1}), and∑K

j=1 supt∈[0,T ] |φj(t)| supt∈[0,T ] |φ′
j(t)| = o(∆−1).

The assumptions (M5) and (M6) describe how the number of included eigenfunctions K increases
when n tends to infinity. The quantities δj reflect the decay of the eigenvalues of the covariance oper-
ators, while Aδf

j
depend on the local properties of the covariance operator G around the eigenvalues

λj . In practice, the eigenvalues usually decrease rapidly to zero, the number of included eigenfunc-
tions K is much less than n; i.e., n ≪ K, which suggests the assumptions (M5) and (M6) can be
easily fulfilled for such processes.

Proof of Theorem 3: The proof is immediate from Theorem 1 of Yao and Lee (2006). �

Proof of Theorem 4: Replacing fi by f̂
(K)
i in (6) and following through the argument of (7)-(10), we

have,

ξ̂i = µξ + θ1ξ ξ̂i−1 + · · ·+ θpξ ξ̂i−p + ǫξ + (φ1 · · ·φK)
TRi (8.1)

Ri(t) = f̂
(K)
i (t)− µ− θ1(f̂

(K)
i−1 (t)− µ)− · · · − θp(f̂

(K)
i−p (t)− µ)− ǫi(t).

= f̂
(K)
i (t)− fi(t)− θ1(f̂

(K)
i−1 (t)− fi−1(t))− · · · − θp(f̂

(K)
i−p (t)− fi−p(t)).

Combining this with (6.6)

sup
t∈[0,T ]

|Ri(t)| ≤ p(1+ ‖ θ1 ‖2 + · · ·+ ‖ θ1 ‖2) max
i−p≤j≤i

sup
t∈[0,T ]

|f̂ (K)
j (t)− fj(t)|

P−→ 0

where ‖ θi ‖= supf(θi(f)(t)/f(t)) is the maximum eigenvalue of the operator θi. For a vector
ARMA(p, q) model with normally distributed innovations, the MSE of the forecast error is (1+K(p+
q)/n)Σǫ as shown in given in Hung and Alt(1994). Following the same argument and combining with
(8.1) using Slutsky’s theorem gives the result. �
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Year Trading Maturities Bandwidth Bandwidth PC VARMA
Days (τ) for mean for (K) (p, q)
(n) covariance

1999 260 0.25,1,2,· · · ,12 2.75 1.0673 3 p = 3, q = 0
2007 255 0.25,0.5,0.75,1,2,· · · ,12 2.75 0.6853 3 p = 1, q = 0

Table 1. Forecasting the term structure as in Section 5.1

Maturity Mean SD Minimum Maximum
0.25 2.8190 0.2981 2.431 4.099
1 2.8637 0.3046 2.557 3.576
2 2.9148 0.3201 2.565 3.517
3 2.9625 0.3309 2.570 3.531
4 3.0024 0.3180 2.576 3.544
5 3.0336 0.3086 2.581 3.555
6 3.0547 0.3032 2.586 3.569
7 3.0739 0.3056 2.596 3.604
8 3.0940 0.3119 2.629 3.660
9 3.1148 0.3222 2.652 3.719
10 3.1371 0.3354 2.659 3.780
11 3.1604 0.3506 2.665 3.837
12 3.1834 0.3679 2.668 3.895

Table 2. Summary Statistics for Euribor 1999 data grouped by maturity in months

Maturity Mean SD Minimum Maximum
0.25 3.9618 0.2226 3.567 4.548
0.50 3.9938 0.2471 3.582 4.946
0.75 4.0310 0.2855 3.594 4.969
1 4.0804 0.3197 3.606 4.947
2 4.1952 0.3596 3.648 4.952
3 4.2776 0.3799 3.725 4.953
4 4.3045 0.3593 3.770 4.937
5 4.3276 0.3392 3.808 4.927
6 4.3520 0.3200 3.857 4.917
7 4.3711 0.3039 3.896 4.908
8 4.3891 0.2900 3.924 4.898
9 4.4067 0.2776 3.956 4.891
10 4.4224 0.2677 3.974 4.889
11 4.4362 0.2602 3.984 4.885
12 4.4500 0.2538 3.995 4.885

Table 3. Summary Statistics for Euribor 2007 data grouped by maturity in months
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Year Maturity Bandwidth Bandwidth PC VARMA R2

for mean for
covariance

1999 Short 1.9663 0.9154 2 p = 1, q = 0 0.4223
Long 4.4 2.4603 1

2007 Short 1.1812 0.4927 2 p = 3, q = 0 0.4019
Long 4.4 2.7106 1

Table 4. Regression of the long term on the short term interest rates as in Section 5.2
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Figure 1. Raw data of interest rates. Top: 1999, bottom: 2007; x-axis: day, y-axis:
maturity in months, z-axis (colors): interest rate.
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Figure 2. Estimated smooth mean function of Euribor data. Top: 1999, bottom:
2007; x-axis: maturity in months, y-axis: mean interest rate.
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Figure 3. Estimated smooth covariance function of Euribor data. Top: 1999, bottom:
2007; x-axis and y-axis: maturity in months, z-axis: covariance between interest rates.
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Figure 4. Estimated first three significant eigenfunctions of the Euribor data. x-axis:
maturity in months. y-axis: estimated eigenfunctions. Top 1999 blue(79.1), green(8),
red(0.5). Bottom 2007: blue(81.5), green(1.2), red(0.2). Numbers in brackets denote
percentage of variance explained.
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Figure 5. Distance between observed functions and estimated functions for the Eu-
ribor data. The blue lines are estimates using the first three principal components.
The red lines are for the fitted functions using the method of Diebold and Li (2006).
Left panel: time series of RMSE plotted over days. Right panel: RMSE plotted over
maturity. Top: 1999, bottom: 2007.
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Figure 6. Distance between observed functions and predicted functions using
VARMA modeling for the Euribor data. The blue lines are predictions using the
first three principal components. The red lines are predictions using the method of
Diebold and Li (2006). Left panel: time series of RMSE plotted over days. Right
panel: RMSE plotted over maturity. Top: 1999 the order of ARMA is chosen to be
(3,0), bottom: 2007 the order of ARMA is chosen to be (1,0).
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Figure 7. Estimated regression surface of the Euribor data. Top: 1999, bottom:
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Hour Mean SD Minimum Maximum
1 51.1599 11.7999 6.98 74.01
2 44.4660 12.6925 1.10 69.63
3 39.3625 12.5969 1.77 64.09
4 35.7377 12.5233 1.00 60.20
5 37.5708 11.7297 2.05 61.18
6 47.3861 11.6892 0.00 70.28
7 60.0419 13.8962 0.00 94.51
8 80.8758 17.7730 0.00 135.66
9 85.3308 20.9992 0.00 157.91
10 90.9880 24.4998 0.00 200.78
11 95.8930 28.0496 0.00 199.92
12 105.1220 35.8101 17.00 274.95
13 92.9396 22.8618 18.44 166.06
14 88.3578 21.4724 19.06 159.00
15 84.9993 22.5315 17.05 163.90
16 79.3881 19.7112 19.14 133.62
17 75.1704 16.9914 21.06 119.93
18 75.5914 14.6505 26.27 113.48
19 78.9728 14.5556 30.05 149.92
20 77.4729 15.5560 32.05 138.47
21 76.8082 15.7122 33.54 125.02
22 69.3300 13.2287 40.03 105.93
23 65.8497 11.3978 38.25 94.82
24 55.0160 11.3874 26.56 80.98

Table 5. Summary statistics for the electricity spot data 2008 grouped by the hour
of the day
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Figure 9. Top: raw data for electricity spot prices; x-axis: Day, y-axis: hour of the
day, z-axis: spot price. Bottom: estimated smooth mean function. x-axis: hour of the
day, y-axis: estimated mean.
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Figure 10. Top: smooth covariance surface of electricity data; x-axis and y-axis: hour
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x-axis: hour of the day, y-axis: estimated eigenfunction. Blue(74.0), green(10.0),
red(4.0), cyan(2.8). Numbers in brackets denote percentage of variance explained.
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Figure 11. Electricity data. Top: distance between observed functions and fitted
functions using the first four principal components. Bottom: distance between ob-
served functions and predicted functions using VARMA(1,0) modeling of principal
components. Left panel: time series of RMSE plotted over days. Right panel: RMSE
plotted over maturity.
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Figure 12. Electricity data. For 12 randomly selected days: daily observed func-
tions(blue), fitted functions(green) and predicted functions using an VARMA(1,0)
model(red) .
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Week AR FDA IHMAR
1 0.0874 0.1214 0.1160
2 0.1431 0.1374 0.1413
3 0.1301 0.1456 0.1576
4 0.1747 0.1352 0.1746
5 0.1009 0.0787 0.1484
6 0.0584 0.0721 0.1095
7 0.1691 0.1422 0.1672
8 0.1486 0.1469 0.1576
9 0.1105 0.1017 0.1478
10 0.1215 0.1297 0.1361
11 0.1988 0.1775 0.2164
12 0.2203 0.1530 0.2527
13 0.1229 0.1166 0.1577
14 0.1507 0.1432 0.1697
15 0.0942 0.1040 0.1191
16 0.1248 0.1016 0.1377
17 0.3689 0.2644 0.3529
18 0.1679 0.1556 0.1749
19 0.1612 0.0945 0.1948
20 0.0971 0.0941 0.1198
21 0.1055 0.1030 0.1357
22 0.1707 0.1368 0.1863
23 0.1299 0.1307 0.1438
24 0.0867 0.0736 0.1066
25 0.1478 0.1554 0.1827
26 0.1665 0.1442 0.1841
27 0.0822 0.0891 0.1238
28 0.1019 0.1158 0.1394
29 0.0839 0.0717 0.1274
30 0.0953 0.1123 0.1318
31 0.1199 0.1079 0.1270
32 0.2217 0.1785 0.2253
33 0.0833 0.0694 0.1411
34 0.0786 0.0792 0.1456
35 0.0902 0.0879 0.1397
36 0.1139 0.1107 0.1411
37 0.1111 0.0987 0.1409
38 0.0945 0.0914 0.1341

WMAE 0.1325 0.1203 0.1581
♯ best 11 27 0
m.d.f.b 0.5909 0.1280 1.5643

Table 6. WMAE errors for Electricity data. Best results in each row are emphasized
in bold. Measures of fit are summarized in the bottom rows. They include the mean
WMAE over all weeks, the number of times a given model was best and the mean
deviation from the best model in each week (m.d.f.b.).
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