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Abstract. Financial contagion indicates a process through which transmission of shock originating
in the financial market of one economy spreads to others. Although the study of causes and prevention
of contagion is popularized by economists, very few quantitative studies exist on detection of conta-
gion. This paper provides a new idea of Residual and Recurrence Times (RRT) of high or low values
for multivariate time series to detect contagion. In presence of financial contagion, the distributions
of residual and recurrence times are not the same. We examine the equality of two distributions
using the permutation test. In comparison to other methods in multivariate extreme value theory,
our proposed method does not need the i.i.d. assumption. We derive asymptotic results under the
GARCH model. Our method can handle the situation where the extremes for different components
do not occur at the same time. We justify our methods in two ways: first using thorough simulation
studies and then applying the proposed method to real data on weekly stock indices from seventeen
markets.

Keywords: contagion; multivariate time series; permutation test; GARCH model; compound Pois-
son process.

1. Introduction

Contagion is primarily used to describe the spread of a disease by direct or indirect contact.
In financial markets, contagion refers to the transmission of a financial shock in one market to
other interdependent markets, in a manner similar to communication of medical disease. Financial
contagion can be at both levels: at the domestic level, e.g., the crash of Lehman Brothers and
subsequent depressed United States financial markets, and, at international level, e.g., the Mexican
“Tequila crisis” in 1994 that spread to all countries in South America.

Despite the wide use of the term contagion there exists no universal mathematical definition
for contagion. According to Forbes and Rigobon (2001), there have been four methods to test
and measure contagion effects. The first and most straightforward one is based on cross-markets
correlation coefficient in asset returns and examines whether inter-related financial markets exhibit
anomalous patterns of correlation in returns during two different periods: stable period and the
period following a shock. If the correlation coefficient increases significantly after the shock, this
implies the presence of contagion. Details can be found in King and Wadhani (1990) and Lee and
Kim (1993). In the second approach (as in Hamao et al. (1990)), the ARCH or GARCH models are
used to test for the presence of significant volatility spillover from one market to another during or
after the crisis. The third test, implemented by Longin and Solnik (1995), examines whether there is
significant change in the co-integrating vector between markets. The fourth procedure applies probit
model to ascertain the probability of a crisis occurring in one country conditional on a crisis that has
already occurred in another country (Eichengreen et al (1996) and Kaminsky and Reinhart (1998)).

Contagion is observed when one or more entities are going through extreme high or low economic
phases. Such phases are economically the most interesting and high-impact periods. Methods of
multivariate time series are not suitable in this setting, since they concentrate on the joint behavior
during stable and stationary periods. Another approach is through tail dependence in multivariate

†Corresponding author, E-mail: rsen@isichennai.res.in.
3



4 TESTING CONTAGION IN FINANCIAL TIME SERIES

extreme value theory, which is used to study the dependence between multiple variables at times of
extreme high or low periods, see Sen and Tan (2012) and references therein. The main drawback
of this approach is the assumption of independently and identically distributed (i.i.d.) observations.
Thus, serial dependence in the time-series of extremes is ignored. Since, in general, it takes finite time
for financial shocks to be transmitted from one market to another, the extremes do not necessarily
occur in both series at the same point of time. Extreme value theory ignores this crucial fact. Our
new method, Residual and Recurrence Times, focuses on the time lags of transmission of financial
shocks and the assumption of i.i.d. observations is removed.

To illustrate our claim, we present two simulated series X and Y in Figure 1. The horizontal lines
in the plot are 90th percentile of series X and Y , respectively. It is obvious that a large shock in series
Y is followed by another large shock in series X in a few steps (less than two steps). Thus, contagion
effect is present. We generate the non-extreme values (which accounts for 90% of the data) in the
two series independently from standard normal distribution. The only dependent part comes from
the extreme values, which accounts for 10% of the data. Our proposed method is apt at detecting
the contagion effect despite presence of small cross-autocorrelation and where extreme dependence
constitutes a small proportion of the data. We also observe that in Figure 1, the extreme events in
X and Y do not necessarily occur at the same time point. Thus, bivariate extreme value theory may
not be a good tool here. Furthermore, we find that extremogram, see Davis and Mikosch (2009), for
this kind of series is very small and hence, extremogram may not be a good tool for detecting the
extremal dependence largely due to an implicit assumption of fixed time lag between extreme events.
Our proposed method does not suffer from fixed time lag problem.

The rest of the paper is organized as follows: Section 2 describes our proposed test and testing
procedure. We detail the method validation for the RRT method under different scenarios in Section
3. Section 4 provides the simulation study. In Section 5, we apply our proposed test to real data
from financial markets. Section 6 contains concluding comments.

2. Model Description

In this section, we describe the testing procedure for the Residual and Recurrence Times Test
(RRT) Test. In Section 2.1, we introduce the used notations and definitions whereas Section 2.2
outlines the procedure for testing contagion.

2.1. Some Notations and Definitions. Let X and Y be two time series, e.g., return on assets,
volatility, volume, etc.

Definition 2.1 (Extreme Event).
An extreme event for series X (Y ) is an event defined as being beyond a chosen threshold, say an
upper or lower percentile of the empirical distribution of series X (Y ).

Definition 2.2 (Recurrence Time).
Recurrence time, denoted by Ui (Vj), for series X (Y ) is the time lag between two consecutive occur-
rences of extreme events in series X (Y ).

Definition 2.3 (Raw Residual Time).
Raw Residual time, denoted by Zk, for series X given series Y is the time lag from an extreme event
in series Y to the following occurrence of an extreme event in series X. Mathematically,

Zk =
N∑

i=1

Ui −
k∑

j=1

Vj + 1,

where

N = arg minn{
n∑

i=1

Ui −
k∑

j=1

Vj ≥ 0}.
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Remark 2.1. The Raw Residual Time is a measure of time needed for the transmission an extreme
shock from one series to another. In the above definition for Raw Residual Times {Zk}, it has “+1”
on the right hand side of the equation. This is just a matter of convention. The “+1” means that if
two extreme events occur at the same time, we consider the transmission time to be 1.

Definition 2.4 (Residual Time).
The sequence of residual times, denoted by {Wk}, for series X given series Y is a subset of {Zk} by
eliminating the overlapping raw residual times, and is equal to {Zk}\{Zk′ : Zk′ + Vk′ = Zk′−1}.

In Figure 2, black dots represent extreme events; sequences of {Ui} and {Vj} denote the recurrence
times for series X and Y , respectively; sequence of {Zk} is the raw residual times for series X given
Y ; sequence of {Wk} is the residual times for series X given Y .

2.2. Testing Procedure. Given a bivariate time series (X, Y ), we can choose a threshold (say
95th percentile or 5th percentile of the empirical series) and find the extreme events as the values
beyond (above or below) the threshold. Then the recurrence times for X , {Ui}, and the residual
times for X given Y , {Wk} can also be obtained. The null hypothesis is that there is no contagion
effect transmitted from Y to X , and the alternative hypothesis is that there exists contagion effect
transmitted from Y to X . The testing rule is constructed as follows. If the distribution of recurrence
times {Ui} and the distribution of residual times {Wk} are significantly different, one would reject
the null hypothesis. There are well established non-parametric procedures for testing the equality of
two distributions, such as Kolmogorov-Smirnov test (K-S test), Mann-Whitney-Wilcoxon test and
Permutation test. We use the Permutation test for this purpose since this is appropriate for integer
valued data with ties, while K-S test is for continuous distributions. Moreover, permutation test is an
exact test which can deal with small sample size situations and we sometimes have small sample sizes
(less than 30) for the sequences of residual times. As for Mann-Whitney-Wilcoxon test, although
it is a choice, it uses rank-sum but our focus is not on ranks. Instead, we care about mean. More
details about Permutation test can be found in Section 3.

Application of permutation test directly to residual times and recurrence times is problematic as it
requires independence between two samples. But residual times and recurrence times are dependent.
Simulation studies show that this problem leads to a very small size. To avoid this problem, we
propose the following alternative. In order to obtain critical values, we permute the combined group
{Ui} ∪ {Vj} since {Ui} and {Vj} are independent under null hypothesis. We use these critical values
for the test statistic U −W . We summarize the testing procedure for existence of contagion effect
from Y to X as follows:.

(a) Input two series X and Y , and find the time points of extreme events.
(b) Compute the corresponding recurrence times, {Ui} and {Vj}; denote the the sample sizes as

nu and nv for {Ui} and {Vj}, respectively.

(c) Find residual times {Wk} of X based on Y , and calculate U −W , denoted as ∆0.
(d) Combine {Ui} and {Vj} as one group, then permute and divide it into two subgroups, denoted

as {Ũi} and {Ṽj}, with one sample size equal to nu, and the other sample size equal to nv.

Find the corresponding residual times {W̃k} and calculate Ũ − W̃ , denoted as ∆̃i.
(e) Repeat step (d) for all possible permutations (or permute the combined group randomly for

many times), then we have a sequence of {∆̃i}, which will be considered to be critical value.

(f) Finally, the p-value is the proportion of the times when the absolute value of ∆̃i is larger
than or equal to ∆0.

3. Method Validation

This section gives the detailed theoretical justification for the RRT method under different scenar-
ios. The idea of RRT method comes from a simple scenario for i.i.d. series. Since the goal is to test
the existence of contagion effect or extreme dependence among series, we would consider extreme
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events over or below a specified threshold. For two i.i.d. series, called X and Y , the recurrence
times (denoted as {Ui} for X , and {Vj} for Y ) over (below) a high (low) percentile follow Geometric
distribution. If the two recurrence times are independent (or the two series X and Y are independent
over high thresholds), by using“Memoryless” property for Geometric distribution, the residual times
of X given on Y have the same distribution as the recurrence times of X . In such a way we can
construct a hypothesis testing procedure to examine contagion effect from Y to X by testing the
equality of distributions for {Wk} and {Ui}.

Section 3.1 is devoted to the verification of the method under i.i.d. series setting. In section 3.2
the method is validated in the case of ARCH and GARCH model setting.

3.1. Testing contagion in i.i.d. series. As in section 2.1, an extreme event is defined as being
beyond an extreme high or low threshold. Thus, threshold needs to be specified. There are two
cases to deal with. One is when the threshold is a fixed number (i.e., the theoretical pth percentile
of the distribution); the other one is when the threshold is the sample pth percentile of the empirical
distribution. The RRT method is verified under the above two cases for i.i.d. setting.

The following theorem proves the feasibility of the RRT method under the i.i.d. series scenario
when the threshold is a pth percentile of the population.

Theorem 3.1. Let X and Y be two i.i.d. series with cumulative distribution function F (x) and
G(y), respectively. Define {Ui} ({Vj}) to be the recurrence times for series X (Y ) above the 100p1th
(100p2th) percentile of the distribution F (x) (G(y)), and {Wk} be the residual times of X given Y .
Then,

(a) {Ui} is i.i.d. Geometrically distributed with success probability (1 − p1), and {Vj} is i.i.d.
Geometrically distributed with success probability (1− p2).

(b) If X and Y are independent, {Wk} is i.i.d. Geometrically distributed with success probability
(1− p1), that is, {Ui} and {Wk} have the same distribution.

Proof. : As shown in the Figure 3, Ui is distributed as Geometric(1− p1). Based on the assumption
that X and Y are independent and the memoryless property for geometric distribution, one can
obtain that Zk is also distributed as Geometric(1− p1). �

The following theorem proves the feasibility of the method under the i.i.d. series scenario when
the threshold is a pth sample percentile of the empirical distribution. Detailed proof can be found
in Appendix 6.

Theorem 3.2. Let {Xi}
m
i=1 and {Yj}

m
j=1 be two i.i.d. series with length m. Their empirical dis-

tributions are F̂ (x) and Ĝ(y), respectively. Define {Ui}
M
i=1 ({Vj}

M ′

i=1) to be the recurrence times for
series {Xi}

m
i=1 ({Yj}

m
j=1) above the p1th (p2th) sample percentile, and {Wk}

K
k=1 be the residual times

of {Xi}
m
i=1 given {Yj}

m
j=1. Then,

(a) (U1, . . . , UM)
D
= (R1, R2, ..., RM |R1+· · ·+RM ≤ m,R1+· · ·+RM+1 > m), where {Ri}

M+1
i=1

i.i.d.
∼

Geometric(1− p1), and a similar result also holds for (V1, . . . , VM ′).

(b) For any finite integer k, {Ui}
k
i=1 asymptotically

i.i.d.
∼ Geometric(1 − p1) as m → ∞, M

m
→

(1− p1), and {Vj}
k
i=1 asymptotically

i.i.d.
∼ Geometric(1− p2) as m → ∞, M

′

m
→ (1− p2).

(c) If {Xi}
m
i=1 and {Yj}

m
j=1 are independent, for any finite integer k′, {Wk}

k′

k=1 asymptotically
i.i.d.
∼ Geometric(1 − p1) as m → ∞, M

m
→ (1 − p1), that is, {Ui} and {Wk} have the same

asymptotic distribution, as m → ∞, M
m

→ (1− p1).

Remark 3.1. According to above theorem part (c), an asymptotic hypothesis testing procedure for
contagion

H0 : No contagion vs H1 : Exists Contagion

can be constructed as

H0 : {Ui} and {Wk} follow the same distribution
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vs H1 : {Ui} and {Wk} follow different distributions.

3.2. Testing contagion in ARCH and GARCH series. The previous section verifies the RRT
method under the i.i.d. series scenario, while this section gives the validation of the method under
stationary ARCH and GARCH times series models. Section 3.2.1 briefly discusses the idea of ad-
dressing extremal events via point processes. Then, section 3.2.2 gives the theorems used in Point
Processes for extremal events in ARCH and GARCH. Based on Point Processes, one can find the
validation of the RRT method in the last section 3.2.3.

3.2.1. Extremes via Point Processes. The limit structure of the extremes of a stationary sequence
{Xt} is provided by weak convergence of the point processes Nn toward a point process N , e.g.,

Nn(·) =

n∑

t=1

ǫXt/an(·) → N(·),

where ǫx denotes Dirac measure at x and {an} is a sequence of positive constants. The points of
N can be expressed as the products of Poisson points with independent points from a clustered
distribution. Convergence in distribution of a sequence of point processes {Nn} toward a point

process N , Nn
d
→ N , is well explained in Kallenberg (1983), Daley and Vere-Jones (1988), Resnick

(1987). Resnick (1987) describes the close relationship between the convergence of {Nn} and extreme
value theory. More specifically, choose a special set B = [x,∞) and let X(1) ≤ ... ≤ X(n) be the order

statistics of the sample (X1, ..., Xn), then Nn
d
→ N implies that

P (Nn(x,∞) < k) = P (a−1
n X(n−k+1) ≤ x)

→ P (N(x,∞) < k)

=

k−1∑

i=0

P (N(x,∞) = i).

For ARCH(1), GARCH(1, 1) and the general GARCH(p, q) processes {Xt} and their absolute values
{|Xt|}, the form of the limit point process N was determined in Davis and Mikosch (1998), Mikosch
and Stǎricǎ(2000) and Basrak et al. (2002), respectively.

Before we go into details about the extreme exceedances for univariate ARCH (GARCH) models,
we first introduce some basics in ARCH (GARCH). The following Section 3.2.2 follows Embrechts,
Klüppelberg and Mikosch (1997), and Jacod and Shiryaev (2003).

3.2.2. About ARCH(1) and GARCH(1,1) processes. An ARCH(1) process is defined by the equation

Xt =
√

β + λX2
t−1Zt, t ∈ N,

for some initial random variable X0 independent of {Zt}, parameters β > 0 and λ > 0. If λ ∈ (0, 2eγ),
where γ is Euler’s constant (i.e., γ ≃ 0.577), then {Xt} is stationary.

Let κ > 0 be the unique positive solution of the equation

h(u) ≡ E(λZ2)u = 1,

where Z is standard normal. Then, for stationary ARCH(1) process with parameters β > 0 and
λ ∈ (0, 2eγ), we have

P (X > x) ∼
c

2
x−2κ, x → ∞,

where

c =
E[((β + λX2)κ − (λX2)κ)(Z2)κ]

κE[(λZ2)κln(λZ2)]
∈ (0,∞),

for a standard normal random variable Z, independent of X = X0.
The following theorem is from de Hann et al. (1989).
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Theorem 3.3 (The extremes of an ARCH(1) process).
Let {Xt} be a stationary ARCH(1) process. For x > 0, let

Nn(·) =
n∑

i=1

ǫn−1i(·)I{Xi>xn1/(2κ)}

be the point process of exceedances of the threshold xn1/(2κ) by X1, . . . , Xn.
Then

Nn
d
→ N, n → ∞,

in Mp((0, 1]), where N is a compound Poisson process with intensity cθ−2κ and cluster probabilities

πk = (1− Π(2)(0.5))−1
∞∑

m=k

(
m

k

)
π(2)
m 2−m, k = 1, 2, . . . ,

where θ = 2θ(2)(1 − Π(2)(0.5)), Π(2)(u) =
∑∞

k=1 π
(2)
k uk, π

(2)
k =

θ
(2)
k −θ

(2)
k+1

θ(2)
, θ

(2)
k = k

∫∞

1
P (card{n ∈ N :

Πn
t=1(λZ

2
t ) > y−1} = k − 1)y−κ−1dy, θ

(2)
1 = θ(2).

By applying Theorem 3.3 and continuous mapping theorem, one can define a mapping T̃ :
Mp((0, 1]) → P(D((0, 1])) by

T̃ (Nn) = Nn((0, ·]), T̃ (N) = N((0, ·]).

Then, it follows
Nn((0, ·]) → N((0, ·]) in P(D((0, 1])), as n → ∞.

Then, by using continuity property of Skorokhod topology (Billingsley (1999)), for any 0 < u < 1,
we have

T n
i := Ti(N

n, u) → Ti := Ti(N, u), n → ∞, i = 0, 1, . . . (3.1)

where T n
i ’s and Ti’s are occurrence times (or jumps of the point process).

An GARCH(1,1) process is defined as

Xt = σtZt, t ∈ Z,

σ2
t = α0 + β1σ

2
t−1 + α1X

2
t−1 = α0 + σ2

t−1(β1 + α1Z
2
t−1),

The parameters α0, α1 and β1 are nonnegative, {Zt} is a sequence of i.i.d. symmetric random variables
with EZ2

1 = 1. A sufficient condition for the existence of a stationary solution is as follows,

α0 > 0 and E ln(α1Z
2 + β1) < 0.

For convenience, let
At = α1Z

2
t−1 + β1, t ∈ Z.

Assume the law of lnA is non-arithmetic, ElnA < 0, P (A > 1) > 0 and there exists h0 ≤ ∞ such
that EAh < ∞ for all h < h0 and EAh0 = ∞. Then the equation

EAκ/2 = 1

has a unique positive solution.
Let {Xt} be a strictly stationary GARCH(1,1) processes. For fixed h ≥ 0, consider the strictly

stationary sequence of random row vectors

Xt = (Xt, σt, . . . , Xt+h, σt+h), t ≥ 1.

Under above conditions, there exists a sequence {an} such that

nP (|X| > an) → 1, n → ∞,

and an = n1/κl(n) for a slowly varying function l, i.e., limt→∞ l(at)/l(t) = 1, for any a > 0.
The following theorem is from Mikosch and Stǎricǎ (2000).
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Theorem 3.4 (Point process for GARCH(1,1) process).
Let {Xt} be a GARCH(1,1) process satisfying the above conditions, then

Nn :=
n∑

t=1

ǫXt/an
d
→ N :=

∞∑

i=1

∞∑

j=1

ǫPiQij
,

where
∑∞

i=1 ǫPi
is a Poisson process on R

+ with intensity measure v(dy) = θXκy
−κ−1dy and θX is

the extremal index of the sequence {|Xt|} which exists and positive. The process {Pi} is independent

of the sequence of i.i.d. point processes
∑∞

j=1 ǫQij
, i ≥ 1, and Qij=((Q

(m)
ij,X, Q

(m)
ij,σ), m = 0, . . . , h).

Note: more details can be found at Davis and Mikosch (1998), Mikosch and Stǎricǎ (2000).

Remark 3.2. It is possible to extend the above results to point processes with points in time-space.
Under the assumption of strong mixing (see Mori (1997)), the weak convergence of {Nn} implies

the convergence of N̂n =
∑n

t=1 ǫ(t/n,Xt/an). For fixed x > 0, the point process of exceedances of the
threshold xan by the sequence {Xt} is

Ñn(·) =

n∑

i=1

ǫi/n(·)I{Xi>xan} = N̂n(· × (x,∞)).

According to a result in Hsing (1998), the weak limit of {Ñn} is compound Poisson with compounding
probabilities πk and probability generating function Π(u) =

∑∞
k=1 πku

k.

3.2.3. Contagion Test for ARCH (GARCH) Series.

Theorem 3.5 (Compound Poisson Processes for Residual Times). Assume that there are two
compound poisson processes X and Y on [0, 1] with intensity λ1 and λ2, respectively. Let Ui and Vj

be the recurrence times for X and Y , respectively. Also, let {Wk} be the residual times. Then,

(a) Ui
i.i.d.
∼ exp(λ1) and Vj

i.i.d.
∼ exp(λ2).

(b) If X and Y are independent, {Wk}
i.i.d.
∼ exp(λ1).

proof. (a) This is obvious by using the “memoryless” property of exponential distribution.
(b) Define {Zk} to be raw residual times as in section 2.1 and as shown in Figure 2

P (Z1 = z1, . . . , Zn = zn|Vj, j = 1, . . . , n)

=





if zn−1 < Vn :

P (Z1 = z1, . . . , Zn−1 = zn−1|Vj, j = 1, . . . , n− 1)×

×P (Zn = zn|Vj, j = 1, . . . , n),

if zn−1 ≥ Vn :

P (Z1 = z1, . . . , Zn−1 = zn−1|Vj, j = 1, . . . , n− 1) (note : zn−1 + Vn = zn)

= P (Z1 = z1, . . . , Zn−1 = zn−1|Vj, j = 1, . . . , n)×

×P (Zn = zn|Vj, j = 1, . . . , n)I{zn−1<Vn}

= · · · · · ·

= P (Z1 = z1|V1) · P (Z2 = z2|V1, V2)
I{z1<V2} × · · ·

· · · × P (Zn = zn|Vj, j = 1, . . . , n)I{zn−1<Vn}

By using “memoryless” property for exponential random variable, one would have

P (Zk = zk|Vj, j = 1, . . . , k) = λ1e
−λ1zk

Therefore,

P (Z1 = z1, . . . , Zn = zn|Vj, j = 1, . . . , n)

= (λ1e
−λ1z1)(λ1e

−λ1z2)I{z1<V2} · · · (λ1e
−λ1zn)I{zn−1<Vn}
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Then, the distribution for residual times {Wk} is

{Wk}
i.i.d.
∼ exp(λ1).

�

Denote a metric space by S, and let S be the Borel σ-field, the one generated by the open sets.
Let P be a probability measure on S. If probability measures Pn and P satisfy Pnf → Pf for every
bounded, continuous real function f on S, we say that Pn converges weakly to P and write Pn

w
→ P .

Assume that the product T = S ′ × S ′′ is separable, which implies that S ′ and S ′′ are separable
and that the three Borel σ-fields are related by T = S ′ × S ′′. Denote the marginal distribution of
a probability measure P on T by P ′ and P ′′: P ′(A′) = P (A′ × S ′′) and P ′′(A′′) = P (S ′ × A′′). By

continuous mapping theorem that Pn
w
→ P implies that P ′

n
w
→ P ′ and P ′′

n
w
→ P ′′.

Theorem 3.6.
If T = S ′ × S ′′ is separable, then P ′

n × P ′′
n

w
→ P ′ × P ′′ if and only if P ′

n
w
→ P ′ and P ′′

n
w
→ P ′′

Based on the above Theorem 3.6 and extremal results about ARCH and GARCH in section 3.2.2,
point processes P n

X and P n
Y for the extreme exceedances of two independent ARCH (GARCH) pro-

cesses have convergence property as follows:

(P n
X , P

n
Y )

w
→ (PX , PY ) (3.2)

where PX and PY are two independent compound Poisson processes.
Let Un

i and V n
j be the occurrence time for the point processes P n

X and P n
Y , and Un

i and V n
j be the

recurrence times, and {W n
k } be the residual time, which are shown in Figure 2.

From Equation ( 3.1) and Theorem 3.5 part (a), we have

Un
i

w
→ Ui, i = 1, 2, . . . ,

that is,

{Un
i } asymptotically

i.i.d.
∼ exp(λ1). (3.3)

From Equation ( 3.2) and Theorem 3.5, residual times {W n
k } have convergence property as

W n
k

w
→ Wk, k = 1, 2, . . .

that is,

{W n
k } asymptotically

i.i.d.
∼ exp(λ1). (3.4)

Therefore, based on the above Equations (3.4) and (3.3), one can construct a hypothesis for
contagion as follows.

Remark 3.3 (Contagion Test for ARCH (GARCH)).
A hypothesis testing procedure for contagion

H0 : No contagion vs H1 : Exists contagion

can be constructed as

H0 : {U
n
i } and {W n

k } follow the same distribution

vs H1 : {U
n
i } and {W n

k } follow different distributions
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4. Simulation Study

In this section, simulations under different scenarios are given. We compare the performance
of our method with those of Censored Likelihood Method (CLM) of Ledford and Tawn (1996),
Extremogram of Davis and Mikosch (2009) and some other methods in testing tail independence
following Falk and Michael (2006). Section 4.1 shows an artificial time series where two independent
series are superimposed with dependent extremes. In this case the correlation and extremogram
cannot capture the extreme dependence, but Residual and Recurrence Times method can, as seen
from the power. Section 4.2 to Section 4.3 obtain the power and size of Residual and Recurrence
Times method by using simulated data under different models: the i.i.d. normal distribution model
and the GARCH model (using indices time series to estimate parameters).

All results are reported with threshold 0.9 and significance level 0.05. Simulations for other values
give similar results and are available from the authors on request.

4.1. Series with Dependent Extremes but Independent Non-extremes. This section de-
scribes a procedure for generating a bivariate sequence with dependent extremes but independent
non-extremes, where the dependent extremes account for a small proportion (say, 10%) and the
independent non-extremes take up a large proportion (say, 90%). For such a bivariate sequence,
the cross-correlation between the two components are very small. Thus, cross-correlation does not
indicate extreme dependence.

The steps of series generating procedure is shown as below.

(a) First generate two independent i.i.d. standard normal series, called series x and series y (the
cross-autocorrelation between x and y is close to zero, since they are independent).

(b) Find the time points (denoted as {tj}
J
j=1) of series y, where extreme events occur (above 90th

percentile of y), and make these values more extreme by adding 1 to each of them, then call
the modified series, Y .

(c) Add 4 to the value in series x at each time point tj + kj, where kj is an independent random
variable taking value {0, 1, 2} with probability {1/6, 1/3, 1/2} and 1 ≤ j ≤ J . Call the
modified series, X . This step makes the modified series X and Y extreme dependent, since
an extreme event in series Y will trigger another extreme event in series X in a few, say 0-2,
time points later. Figure 1 shows one sample series X and Y .

By using the above procedure, one can generate 1000 bivariate series X and Y with length 1000,
then apply the RRT method to test contagion effects and obtain the power of the test. Since
the extreme events only account for 10% of the data and the independent part accounts for 90%,
thus the cross-autocorrelation between X and Y are still close to zero (no cross-autocorrelation).
Additionally, extreme events in the two series do not necessarily occur simultaneously and time lags
between two extreme events in the two series are not fixed. We calculate the extremogram (with
A = B = (1,∞)× (1,∞)) for each generated series as above, with different thresholds (90%, 95%,
99%) and lags from 1 to 100. The values in the extremgram plot are all very small (nearly all are less
than 0.05). Thus, using the extremogram cannot detect any extremal dependence in the simulated
series. Using the same simulated series, we obtain the power for the other methods, namely, CLM,
Neyman-Pearson (NP) test, Fishers κ (Fish) test, Kolmogorov-Smirnov (KS) test and Chi-square
goodness-of-fit (ChiSq) test. The results in Table 1 show that the NP test outperforms the other
three tests, but is still worse than RRT.

4.2. i.i.d. Normal Simulation. In this section, we generate i.i.d. univariate and bivariate normal
series to obtain the size and power of our Residual and Recurrence Times test. The simulation study
is as follows.

(a) Size: simulate two independent series of i.i.d. normal samples with σ1 = 1, σ2 = 10, and
length equal to 1000. Apply our algorithm to test independence of the two simulated series
with significant level 0.05. Repeat the above procedure for 1000 times, then we can obtain
the size of our algorithm.
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(b) Power: simulate two kinds of i.i.d. bivariate normal random vector series, one with mean(
0
0

)
and positive correlated covariance matrix

(
10 2
2 3

)
; the other with mean

(
0
0

)

and negative correlated covariance matrix

(
10 −2
−2 3

)
. The length for both is 1000. Apply

our algorithm to test the independence of the two components in each of two series (with
significant level 0.05). Repeat the above procedure for 1000 times, then we can obtain the
powers of our algorithm.

4.2.1. Size and Power for Residual and Recurrence Times Method. This subsection describes the
first column of table 2.

In the first row of Table 2, we have sizes of our test for the simulated series when extreme events
for the two series are defined to be above the upper thresholds (Upper vs Upper). Using the same
simulated series, one can also obtain similar size when extreme events are defined to be above a
specified upper threshold for one series and below a specified lower threshold for another series
(Upper vs Lower), and for the case of Lower vs Upper and Lower vs Lower.

In the second row of Table 2, we have powers of our test for the positively correlated and normally
distributed simulated series when extreme events for the two series are defined to be above the upper
thresholds (Upper vs Upper). Using the same simulated series, one can also obtain a similar table
of rejection rates for the case of Lower vs Lower. The power for negatively correlated and normally
distributed simulated series in the cases of Lower vs Upper and Upper vs Lower are also similar.

In the last row of Table 2, we have rejection rates of our test for the positively correlated and
normally distributed simulated series when extreme events for series X is defined to be above the
upper threshold and extreme events for series Y is defined to be below the lower threshold (Upper
vs Lower). Using the same simulated series, one can also obtain a similar table of rejection rates for
the case of Lower vs Upper. The rejection rates for negatively correlated and normally distributed
simulated series in the cases of Upper vs Upper and Lower vs Lower are also similar.

Considering Table 2, one can find that as for the above positively corrected series, the power for
the Upper vs Upper (and Lower vs Lower) case is much larger than the Upper vs Lower (and Lower
vs Upper) case. It shows that the Residual and Recurrence Times test can not only detect contagion
effect between the two components but also can tell in which quadrant contagion effect exists.

4.2.2. Comparison with Other Methods. By using the same simulated series, one can obtain the size
and power for other methods.
(a) CLM

The size and power (positively correlated series and Upper vs Upper case) of CLM are shown in
the second column of Table 2. It should be noted that the CLM test is based on maximum likelihood
method and often encounters bad results, e.g., warning messages, errors and NaN. We present the
percentage of such bad results in brackets in the tables. Since the simulated series are positively
correlated, the rejection rates for the case of Upper vs Lower (or Lower vs Upper) should be small.
However the last row of Table 2 portrays that only the very high thresholds for one components and
very low thresholds for the other component lead to small rejection rates indicating problems with
CLM. As for negatively correlated simulated series, the results are similar.
(b) Other Tail Independence Tests

The size and power (positively correlated series and Upper vs Upper case) of other tail indepen-
dence testing methods are shown in the other columns of Table 2. The powers for the Fisher test,
and the ChiSq test are not very good. Given that the simulated series are positively correlated, the
rejection rates for the case of Upper vs Lower (or Lower vs Upper) should be small. But according
to table 2, the KS test has a relatively large rejection rate. The NP test performs well in all these
cases. As for negatively correlated simulated series, the results are similar.
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4.3. GARCH Simulation. In this section, we use GARCH model to fit real indices series and
use fitted model to simulate time series in order to find the size and power of our method. An
introduction to DCC-GARCH model can be found in Nakatani and Teräsvirta (2008). The real
data being used is weekly indices for Mexico and USA from May 2003 to May 2007 (about 4 years
weekly data), since this time period data shows contagion effects from USA to Mexico with p-value
very close to 0 (Lower vs Lower case, 0.10 vs 0.10 thresholds) and the p-value in the case of Upper
vs Lower (0.90 vs 0.10 thresholds) is 0.685, which indicates no contagion transmission in Upper vs
Lower quadrant.

(a) Size: use above data to fit two unitvariate GARCH models (GARCH(1,1)), then use the fitted
models to simulate two series. Apply our algorithm to test independence of the simulated
series. Repeat the above process for 1000 times, then we can obtain the size of our algorithm.

(b) Power: use the same data to fit a bivariate GARCHmodel (DCC-GARCH), then use the fitted
model to simulate log returns. Apply our algorithm to test independence of the simulated se-
ries. Repeat the above process for 1000 times, then we can obtain the power of our algorithm:

4.3.1. Size, Power and Rejection Rate for Residual and Recurrence Times Method. The following
simulation for bivariate GARCH series is using the DCC-GARCH model. Size, power and rejection
rate of our proposed test for the simulated series are reported in the first column of Table 3.

4.3.2. Comparison with Other Methods. By using the same simulated series, one can obtain the size
and power for other methods stated in section 4.2.2.
(a) CLM

Size and power are shown in Table 3. Although the size and power for this method are both good,
the rejection rate for case of Upper vs Lower (say, 0.90 vs 0.10) is high as shown in Table 3.
(b) Other Tail Independence Tests

Size, power and rejection rate are shown in Table 3. The Fish test shows low power. Although
the size and power for KS test and Chisq test are good, a high rejection rate for case of Upper vs
Lower goes unfavorably against the these two tests.

5. Empirical Study for Stock Indices Data

In this section, we consider stock indices time series for 17 countries: Argentina, Brazil, Chile,
Colombia, Mexico, Peru, China, India, Indonesia, Korea, Malaysia, Philippines, Taiwan, Thailand,
Europe, USA and Japan. These are MSCI country indices obtained from Datastream and the data is
weekly. Section 5.1 gives a table of pairwise p-values resulting from applying Residual and Recurrence
Times test to the indices data where we have used the data from 2006 to the end of 2011. Section 5.2
focuses on two specific pairs: Europe given USA, and Mexico given USA using data from 1993 to
2011 using moving windows.

5.1. Pairwise p-values. By using Residual and Recurrence Times method to test contagion effect
for the indices data set from 2006 to the end of 2011 , one can obtain a table of pairwise p-values.
Pairwise p-values are shown in Table 6, using 0.1 vs 0.1 threshold, meaning that extreme events are
defined to be below 10th percentile of the corresponding series data.

The evidence favoring the contagion is evident in those cases where the obtained p-value is less than
0.05. Many small-sized countries (defined in terms of their market capitalization) have contagion
effects between each other. Country like USA, European countries and China cannot be easily
effected.

5.2. Moving Window Plots. In this section, we examine contagion effects for two specific pair
of countries. We concentrate on four specific pairs: Korea given Thailand (for the “Asian Flu” in
1997), Argentina given Brazil (for the crisis in Brazil in 1998/1999 and Argentina being the largest
trading partner of Brazil), Europe given USA, and Mexico given USA (given the Tequila crisis and
the Trade agreement between Mexico and USA). Scatter plots of p-value against initial time for a
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period are shown in Figure 4, Figure 5, Figure 6, and Figure 7, with a moving window of length of
3 years (about 156 data points) and 4 years (about 208 data points), and step of one month (about
4 data points).

The “Asian Flu” impact is clear from Figure 4. The crisis that has generated in 1997 following
the devaluation of Thai Baht exerts its impact on Korea and the impact lasts until end 1999. The
contagion effect is stronger until 2004. Figure 5 demonstrates that for Argentina and Brazil, the
impact was strong during 1998-1999 and then again from late 2004. The contagion effect from USA
to Europe after year 2000 becomes more significant when we consider thresholds 0.10 vs 0.10, and
for 0.15 vs 0.15. This provides an evidence of continuous interaction between USA and European
countries for the recent decade. For Mexico and USA, the contagion effects are stronger around year
2005 and it also shows large contagion effects around USA’s sub-prime crisis.

6. Concluding Comments

Most of the development in recurrence time has been so far with univariate time series. This paper
provides a new idea of Residual and Recurrence Times method of high or low values for bivariate
time series to detect contagion. We document that our proposed method does not need the i.i.d.
assumption and can handle the situation where the extremes for different components do not occur
at the same time.

Although we apply the Residual and Recurrence Times to financial series, this method can be a
valid tool in many areas, for example, analysis of spatial patterns of disease and spatial spread of
epidemics, see Marshall (1991); analysis of spread of social influences, see Dodds and Watts (2005);
transmission of neural signals on the onset of epilepsy with irregular behavior of one neuron triggering
that of others and resulting in everything breaking down, see Nigram (2004).

Some interesting extensions can easily follow:

(a) Extend the bivariate method to multivariate scenario and detect if there are some series (say,
indices series) that drive the other markets.

(b) How to choose good thresholds and how would thresholds affect the method.
(c) Establish a method of estimation of the time it takes for transmission of a shock from one

market to another.
(d) How to deal with clusters of exceedances and strong serial dependence in the same series.

In all, we are looking forward to a deeper development of this method and more applications in
the future.

Appendix

Proof of Theorem 3.2. Proof. (a) Using the definition of {Ui}, it follows

P (U1 = u1, U2 = u2, ..., UM = uM) =
1(
m
M

) .

Let R := (R1, R2, ..., RM+1) be (M + 1) i.i.d. Geometric(q) random variables, where q = 1 − p1.
Then,

P (R1 = r1, R2 = r2, ..., RM = rM |R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m)

=
P (R1 = r1, R2 = r2, ..., RM = rM , R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m)

P (R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m)

=
qMpm−M

1

qMpm−M
(
m
M

)

=
1(
m
M

) .

As a result,

(U1, . . . , UM)
D
= (R1, R2, ..., RM |R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m).
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(b) For any integer k ≤ M ,

P (Ui = ui, i = 1, . . . , k)

=

(
m−u1

M−1

)
/
(
m
M

)

1
×

(
m−u1−u2

M−2

)
/
(
m
M

)
(
m−u1

M−1

)
/
(
m
M

) ×

(
m−u1−u2−u3

M−3

)
/
(
m
M

)
(
m−u1−u2

M−2

)
/
(
m
M

) × · · · ×

(
m−u1−...−uk

M−k

)
/
(
m
M

)
(
m−u1−···−uM−1

M−(k−1)

)
/
(
m
M

)

M≈(1−p1)m
−→ (1− p1)p

u1−1
1 × (1− p1)p

u2−1
1 × · · · × (1− p1)p

uk−1
1 .

As a result, for any finite k,

{Ui}
k
i=1 is asymptotically

i.i.d.
∼ Geometric(1− p1) as m → ∞,

M

m
→ (1− p1).

In the same way, we have

{Vj}
k
j=1 is asymptotically

i.i.d.
∼ Geometric(1− p2) as m → ∞,

M ′

m
→ (1− p2).

(c) In order to find the asymptotic joint distribution for the residual times {Wk}, one would first
find the asymptotic joint distribution for raw residual times {Zk}. Let ν := (V1, . . . , VM). Note that

P (Un = s− t|Sn−1 = t) =

(
m−s
M−n

)
(

m−t
M−n+1

)

and P (Un ≥ ν − t|Sn−1 = t) =

(
m−ν+1
M−n+1

)
(

m−t
M−n+1

) .

Thus, for any t < ν,

P (Sn = s|Sn−1 = t, Sn ≥ ν)

=
P (Sn = s, Sn ≥ ν|Sn−1 = t)

P (Sn ≥ ν|Sn−1 = t)

=
P (Un = s− t, Un ≥ ν − t|Sn−1 = t)

P (Un ≥ ν − t|Sn−1 = t)

=
P (Un = s− t|Sn−1 = t)

P (Un ≥ ν − t|Sn−1 = t)

=

(
m−s
M−n

)
(
m−ν+1
M−n+1

) , which is not depending on t.

Then,

P (Sn = s|Sn−1 < ν, Sn ≥ ν)

=
P (Sn = s, Sn−1 < ν|Sn ≥ ν)

P (Sn−1 < ν|Sn ≥ ν)

=

∑ν−1
t=0 P (Sn−1 = t|Sn ≥ ν)P (Sn = s|Sn−1 = t, Sn ≥ ν)∑ν−1

t=0 P (Sn−1 = t|Sn ≥ ν)

=

(
m−s
M−n

)
(
m−ν+1
M−n+1

) .

Since N satisfies {∑N
i=1 Ui ≥ ν,∑N−1
i=1 Ui < ν,
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then,

P (N = n|ν) =

(
ν−1
n−1

)(
m−ν+1
M−n+1

)
(
m
M

) .

Thus,

P (SN = s|ν)

=

ν∑

n=1

P (SN = s,N = n|ν)

=

ν∑

n=1

P (Sn = s|ν,N = n)P (N = n|ν)

=

ν∑

n=1

P (Sn = s|Sn ≥ ν, Sn−1 < ν)P (N = n|ν)

=

ν∑

n=1

[ (
m−s
M−n

)
(
m−ν+1
M−n+1

) ×
(
ν−1
n−1

)(
m−ν+1
M−n+1

)
(
m
M

)
]

=

ν∑

n=1

(
m−s
M−n

)(
ν−1
n−1

)
(
m
M

)

=

(
m−s+v−1

M−1

)
(
m
M

) .

Since Zk = SN −
∑k

j=1 Vj + 1,

P (Zk = zk|ν) = P (SN = zk + ν − 1|ν)

=

(
m−zk−ν+1+ν−1

M−1

)
(
m
M

)

=

(
m−zk
M−1

)
(
m
M

)

M≈(1−p1)m
−→ (1− p1)p

zk−1
1 as m → ∞.

Thus,

(Zk|V1, . . . , VM)
appr.
∼ Geometric(1− p1), which does not depend on k.

To find the asymptotic joint distribution for (Z1, . . . , Zk ∗ |V1, . . . , VM), where

k̃ = the number of non-overlaps = M −

M−1∑

j=1

I{zi=zi+1+vi+1}.

Step 1:

P (Z1 = z1|V ) =

(
m−z1
M−1

)
(
m
M

) → (1− p1)p
z1−1
1 as m → ∞.

Step 2: In order to find P (Z1 = z1, Z2 = z2|V ) = P (Z2 = z2|Z1 = z1, V )P (Z1 = z1|V ), one needs
to find is P (Z2|Z1 = z1, V ).

P (Z2 = z2|Z1 = z1, V ) =





if z1 ≤ V2 :
P (Z1,Z2|V )
P (Z1|V )

=
(m−z1−z2

M−2 )/(mM)
(m−z1

M−1 )/(
m
M)

→ (1− p1)p
z2−1
1 ;

if z1 > V2 :
I{z1=z2+V2}.
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Therefore,

P (Z1 = z1, Z2 = z2|V ) = P (Z2 = z2|Z1 = z1, V )P (Z1 = z1|V )

=

(
m−z1
M−1

)
(
m
M

) ·

((
m−z1−z2

M−2

)
/
(
m
M

)
(
m−z1
M−1

)
/
(
m
M

)
)I{z1=z2+V2}

→ (1− p1)p
z1−1
1 · ((1− p1)p

z2−1
1 )I{z1=z2+V2} .

Step 3: By applying the same technique

P (Zk = zk|Z1 = z1, · · · , Zk−1 = zk−1, V )

=

((m−w−zk
M−k̃−1

)
(
m−w
M−k̃

)
)I{zk−1≤Vk}

→ ((1− p1)p
zk−1
1 )I{zk−1≤Vk}

where w = the length of the coverage of all the intervals {z1, · · · , zk−1}.
In conclusion,

P (Z1 = z1, · · · , Zk = zk|V )

=

((
m−z1
M−1

)
(
m
M

)
)

·

((
m−z1−z2

M−2

)
(
m−z1
M−1

)
)I{z1≤V2}

· · ·

((m−w−zk
M−k̃−1

)
(
m−w
M−k̃

)
)I{zk−1≤Vk}

→ ((1− p1)p
z1−1
1 ) · ((1− p1)p

z2−1
1 )I{z1≤V2} · · · ((1− p1)p

zk−1
1 )

I{zk−1≤Vk} .

As defined in the section 2.1, {Wk} is a subset of {Zk} with constraint that Zk ≤ Vk+1. Thus,

{Wk} i.i.d.
appr.
∼ Geometric(1− p1).

�
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Method RRT CLM NP Fish KS ChiSq
Power 1 0.358 0.223 0.092 0.130 0.082

Table 1. Power, Dependent extremes with Independent non-extremes

Method RRT CLM NP Fish KS ChiSq
Size 0.042 0.051(0.176) 0.068 0.048 0.035 0.032
Power 0.954 1.000(0.185) 0.870 0.144 0.467 0.329

Rej. Rate 0.161 1.000(0.165) 0.000 0.379 0.667 0.474

Table 2. Size, Power and Rejection Rate. Normal Positively correlated.

Method RRT CLM NP Fish KS ChiSq
Size 0.038 0.066(0.119) 0.067 0.050 0.060 0.055
Power 0.911 1.000(0.153) 1.000 0.169 0.876 0.785

Rejection Rate 0.195 0.823(0.156) 0.924 0.111 0.533 0.419

Table 3. Size, Power and Rejection Rate. GARCH Mex | USA
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Table 4. Pairwise p-values with 0.1 vs 0.1 threshold

Arg Bra Chile Colombia Mexico Peru China India Indonesia Korea Malaysia Phili Taiwan Thailand Europe USA Japan
Arg NA 0.055 0.320 0.040 0.095 0.005 0.300 0.180 0.105 0.250 0.595 0.050 0.130 0.105 0.180 0.985 0.310
Bra 0.060 NA 0.380 0.020 0.030 0.000 0.220 0.100 0.140 0.135 0.335 0.045 0.060 0.010 0.225 0.500 0.255
Chile 0.070 0.125 NA 0.130 0.150 0.005 0.435 0.215 0.320 0.520 0.650 0.100 0.110 0.070 0.180 0.840 0.220

Colombia 0.175 0.010 0.840 NA 0.080 0.000 0.415 0.360 0.185 0.530 0.630 0.100 0.150 0.025 0.345 0.910 0.990
Mexico 0.085 0.065 0.655 0.075 NA 0.000 0.930 0.335 0.365 0.550 0.975 0.385 0.345 0.100 0.055 0.275 0.240
Peru 0.015 0.000 0.230 0.020 0.015 NA 0.390 0.165 0.145 0.080 0.915 0.020 0.180 0.010 0.285 0.835 0.245
China 0.125 0.030 0.415 0.235 0.225 0.010 NA 0.240 0.130 0.185 0.385 0.015 0.070 0.025 0.555 0.795 0.295
India 0.175 0.055 0.710 0.050 0.240 0.035 0.295 NA 0.210 0.380 0.390 0.170 0.270 0.120 0.385 0.560 0.615

Indonesia 0.300 0.045 0.695 0.115 0.200 0.030 0.095 0.170 NA 0.510 0.410 0.060 0.060 0.010 0.405 0.895 0.415
Korea 0.170 0.210 0.240 0.380 0.200 0.045 0.430 0.445 0.365 NA 0.430 0.095 0.070 0.155 0.240 0.685 0.220

Malaysia 0.130 0.290 0.390 0.230 0.225 0.060 0.165 0.245 0.300 0.350 NA 0.090 0.115 0.100 0.415 0.930 0.200
Phili 0.195 0.045 0.375 0.025 0.125 0.005 0.330 0.240 0.070 0.285 0.800 NA 0.050 0.030 0.430 0.915 0.305

Taiwan 0.185 0.065 0.460 0.125 0.210 0.025 0.170 0.220 0.120 0.210 0.425 0.045 NA 0.015 0.230 0.780 0.090
Thailand 0.395 0.005 0.980 0.015 0.035 0.000 0.690 0.405 0.215 0.200 0.870 0.415 0.175 NA 0.370 0.910 0.190
Europe 0.145 0.240 0.355 0.165 0.160 0.040 0.615 0.240 0.170 0.690 0.475 0.300 0.160 0.135 NA 0.390 0.170
USA 0.115 0.295 0.660 0.285 0.340 0.130 0.525 0.540 0.470 0.610 0.705 0.280 0.545 0.545 0.185 NA 0.550
Japan 0.170 0.170 0.695 0.145 0.250 0.075 0.825 0.430 0.280 0.990 0.625 0.730 0.190 0.100 0.240 0.795 NA
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Figure 1. Series X and Y with horizontal line as threshold

Figure 2. Recurrence, Raw Residual and Residual Times
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Figure 3. Memoryless Property

Figure 4. Moving Window Plot for Korea | Thailand
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Figure 5. Moving Window Plot for Argentina | Brazil
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Figure 6. Moving Window Plot for Europe | USA.
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Figure 7. Moving Window Plot for Mexico | USA.
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