Algebraic Structures

Homework 1

1. Let A, B, C and D be 4 non-empty sets. Prove or disprove: $A \subseteq B$ and $C \subseteq D$ imply $A \backslash C \subseteq B \backslash D$.
2. Let A be a non-empty set. Prove that the following are equivalent:
(a) There exists an equivalence relation on A.
(b) There exists a partition of the set A.
3. Give an example of an equivalence relation inducing an infinite number of partitions, each containing a finite number of elements.
4. Let A, B, C be 3 non-empty sets. Does there exist a bijection between the sets $C^{A \cup B}$ and $C^{A} \times C^{B}$? Justify your answer.
5. Show that the composition of two bijections is also a bijection.
6. Show that $\mathbb{Z} \times \mathbb{Z}$ is a countable set.
7. Let X be a set. Show that the following statements are equivalent:

- For some $\mathrm{n} \geq 0$, there is a bijection $f: X \rightarrow[n]$, where $[n]=$ $\{1, \ldots, n\}, n \geq 0$.
- There is no proper subset Y of X such that there is a bijection $f: X \rightarrow Y$.

8. Show that countable sets are closed under countable union and finite cartesian product.
9. Let X be a non-empty set. Consider two sets A and B defined as follows: $A=\mathcal{P}(X), B=\{f \mid f: X \longrightarrow\{0,1\}\}$.

Does there exist a bijection between the sets A and B ? Justify your answer.
10. Show that the set of all finite subsets of \mathbb{N} is countable.
11. Show that the set of rational numbers is countable.
12. Prove that the set of all irrational numbers is uncountable.
13. Prove or disprove: The set $\{0,1\} \times \mathbb{R}$ is uncountable.
14. Study the proof of Schröder-Bernstein theorem.

