Algebraic Structures Homework 1

- 1. Let A, B, C and D be 4 non-empty sets. Prove or disprove: $A \subseteq B$ and $C \subseteq D$ imply $A \setminus C \subseteq B \setminus D$.
- 2. Let A be a non-empty set. Prove that the following are equivalent:
 - (a) There exists an equivalence relation on A.
 - (b) There exists a partition of the set A.
- 3. Give an example of an equivalence relation inducing an infinite number of partitions, each containing a finite number of elements.
- 4. Let A, B, C be 3 non-empty sets. Does there exist a bijection between the sets $C^{A\cup B}$ and $C^A \times C^B$? Justify your answer.
- 5. Show that the composition of two bijections is also a bijection.
- 6. Show that $\mathbb{Z} \times \mathbb{Z}$ is a countable set.
- 7. Let X be a set. Show that the following statements are equivalent:
 - For some $n \ge 0$, there is a bijection $f : X \to [n]$, where $[n] = \{1, \ldots, n\}, n \ge 0$.
 - There is no proper subset Y of X such that there is a bijection $f: X \to Y$.
- 8. Show that countable sets are closed under countable union and finite cartesian product.
- 9. Let X be a non-empty set. Consider two sets A and B defined as follows:

 $A = \mathcal{P}(X), B = \{f \mid f : X \longrightarrow \{0, 1\}\}.$

Does there exist a bijection between the sets A and B? Justify your answer.

- 10. Show that the set of all finite subsets of \mathbb{N} is countable.
- 11. Show that the set of rational numbers is countable.

- 12. Prove that the set of all irrational numbers is uncountable.
- 13. Prove or disprove: The set $\{0,1\} \times \mathbb{R}$ is uncountable.
- 14. Study the proof of Schröder-Bernstein theorem.