Algebraic Structures

Homework 2

1. Assume that the equation $x y z=e$ holds in a group G, where e denotes the identity element of G. Does it follow that $y z x=e$? Also $y x z=e$? Justify your answers.
2. Let S be any set. Prove that the law of composition defined by $a b=a$ is associative.
3. Determine the elements of the cyclic group generated by the matrix M, where

$$
M=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right]
$$

4. An nth root of unity is a complex number z such that $z^{n}=1$. Prove that the nth roots of unity form a cyclic subgroup of \mathbb{C}^{\times}of order n.
5. In the definition of subgroup, the identity element in H is required to be the identity of G. One might require only that H have an identity element, not that it is the same as the identity in G. Show that if H has an identity at all, then it is the identity in G. Show the analogous thing for inverses.

6 . Let a, b be elements of an abelian group of orders m, n respectively. What can you say about the order of their product $a b$?
7. Prove that the additive group \mathbb{R}^{+}of real numbers is isomorphic to the multiplicative group P of positive reals.
8. Let $f: G \rightarrow G^{\prime}$ be an isomorphism of groups, let $g \in G$ and $f(g)=g^{\prime}$. Prove that the orders of g and of g^{\prime} are equal.
9. Prove that the set $A u t G$ of automorphisms of a group G forms a group, the law of composition being composition of functions.
10. Prove that the kernel and image of a homomorphism are subgroups.
11. Let $f: G \rightarrow G^{\prime}$ be a surjective homorphism of groups and N be a normal subgroup of G. Prove that $f(N)$ is a normal subgroup of G^{\prime}.

