Algebraic Structures

Homework 3

1. Let S and T be two non-empty sets and $f: S \rightarrow T$. Prove that the nonempty fibres of a map f form a partition of the domain S, where a fibre is a set of those elements of S which is mapped to a single element in T.
2. Let G be a group and $x, y \in G . x$ is said to be a conjugate to y if there exists $g \in G$, such that $x=g y g^{-1}$.
(a) Prove that the relation x conjugate to y in a group G is an equivalence relation on G.
(b) Describe the elements a whose conjugacy class (= equivalence class) consists of the element a alone.
3. Prove that the distinct cosets in a group do not overlap.
4. Let H, K be subgroups of a group G of orders 3,5 respectively. Prove that $H \cap K=\{e\}$.
5. Show the following:
(a) Every subgroup of index 2 is normal.
(b) A subgroup of index 3 may not be normal.
6. Classify groups of order 6 by analyzing the following three cases.
(a) G contains an element of order 6 .
(b) G contains an element of order 3 but none of order 6 .
(c) All elements of G have order 1 or 2 .
7. Answer the following:
(a) Prove that the square of an integer is congruent to 0 or 1 modulo 4.
(b) What are the possible values of the square of an integer modulo 8 ?
8. Answer the following:
(a) Prove that 2 has no multiplicative inverse modulo 6 .
(b) Determine all integers n such that 2 has an inverse modulo n .

9 . Let G be the group of invertible real upper triangular 2×2 matrices. Determine whether or not the following conditions describe normal subgroups H of G. If they do, use the First Isomorphism Theorem to identify the quotient group G / H.
(a) $a_{11}=1$ (b) $a_{12}=0$ (c) $a_{11}=a_{22}$ (d) $a_{11}=a_{22}=1$.
10. Let P be a partition of a group G with the property that for any pair of elements A, B of the partition, the product set $A B$ is contained entirely within another element C of the partition. Let N be the element of P which contains 1. Prove that N is a normal subgroup of G and that P is the set of its cosets.
11. Let \mathbb{R}^{\times}denote the group of non-zero real numbers under multiplication. Identify the quotient group \mathbb{R}^{\times} / P, where P denotes the subgroup of positive real numbers.
12. Let $H=\{ \pm 1, \pm i\}$ be the subgroup of $G=\mathbb{C}^{\times}$of fourth roots of unity. Describe the cosets of H in G explicitly, and prove that G / H is isomorphic to G.

