Algebraic Structures

Homework 4

1. Prove the following identities in an arbitrary ring R :
(1) $0 \mathrm{a}=0$. (2) $-\mathrm{a}=(-1) \mathrm{a}$. (3) $(-\mathrm{a}) \mathrm{b}=-(\mathrm{ab})$.
2. In each case, decide whether the given structure forms a ring. If it is not a ring, determine which of the ring axioms hold and which fail:
(a) U is an arbitrary set, and R is the set of subsets of U. Addition and multiplication of elements of R are defined by the rules $A+B=A \cup B$ and $A . B=A \cap B$.
(b) U is an arbitrary set, and R is the set of subsets of U. Addition and multiplication of elements of R are defined by the rules $A+B=$ $(A \cup B) \backslash(A \cap B)$ and $A . B=A \cap B$.
3. Describe the group of units in each ring:
(a) $\mathbb{Z} / 12 \mathbb{Z}$.
(b) $\mathbb{Z} / 7 \mathbb{Z}$.
(c) $\mathbb{Z} / 8 \mathbb{Z}$.
(d) $\mathbb{Z} / n \mathbb{Z}$.
4. Prove that the product set $R \times R$ of two rings is a ring with component-wise addition and multiplication:

$$
\left(a, a^{\prime}\right)+\left(b, b^{\prime}\right)=\left(a+b, a^{\prime}+b^{\prime}\right) \text { and }\left(a, a^{\prime}\right)\left(b, b^{\prime}\right)=\left(a b, a^{\prime} b^{\prime}\right)
$$

5. Prove that the units of the polynomial ring $\mathbb{R}[x]$ are the nonzero constant polynomials.
6. Determine the structure of the ring $\mathbb{Z}[x] /\left(x^{2}+3, p\right)$, where (a) $p=3$, (b) $p=5$.
7. Prove that an integral domain with finitely many elements is a field.
8. Let R be an integral domain. Prove that the polynomial ring $R[x]$ is an integral domain.
9. Is there an integral domain containing exactly 10 elements?
10. A subset S of an integral domain R which is closed under multiplication and which does not contain 0 is called a multiplicative set. Given a multiplicative set S, we define S-fractions to be elements of the form a / b, where $b \in S$. Show that the equivalence classes of S-fractions form a ring.
11. Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.
12. Let R, R^{\prime} be rings, and let $R \times R^{\prime}$ be their product. Which of the following maps are ring homomorphisms? (a) $r \mapsto(r, 0)$ (b) $r \mapsto(r, r)(c)\left(r_{1}, r_{2}\right) \mapsto$ $r_{1}(\mathrm{~d})\left(r_{1}, r_{2}\right) \mapsto r_{1} r_{2}(\mathrm{e})\left(r_{1}, r_{2}\right) \mapsto r_{1}+r_{2}$
13. (a) Is $\mathbb{Z} / 10 \mathbb{Z}$ isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$?
(b) Is $\mathbb{Z} / 8 \mathbb{Z}$ isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$?
14. (a) Let I, J be ideals of a ring R. Prove that $I \cap J$ is an ideal.
(b) Show by example that the set of products $\{x y \mid x \in I, y \in J\}$ need not be an ideal.
15. (a) Prove that the set of finite sums of products of elements of I and J is an ideal. Denote the ideal by $I J$.
(b) Is $I J \subseteq I \cap J$? Justify your answer.
(c) Show by example that $I J$ and $I \cap J$ need not be equal.
