Algebraic Structures

Homework 5

1. Suppose we adjoin an element a to \mathbb{R} (the real numbers) satisfying the relation $a^{2}=1$. Prove that the resulting ring is isomorphic to the product $\operatorname{ring} \mathbb{R} \times \mathbb{R}$, and find the element of $\mathbb{R} \times \mathbb{R}$ which corresponds to a.
2. Let a be a unit in a ring R. Describe the ring $R^{\prime}=R[x] /(a x-1)$.
3. Let a be an element of a ring R, and let $R^{\prime}=R[x] /(a x-1)$ be the ring obtained by adjoining an inverse of a to R. Prove that the kernel of the natural homomorphism $f: R \rightarrow R^{\prime}$ is the set of elements $b \in R$ such that $a^{n} b=0$ for some $n>0$.
4. Let \mathbb{Q} be the field of rational numbers. Let $F=\mathbb{Q}(\{\sqrt{p}: p \in \mathbb{Z}, p$ is a prime $\})$. Show that F is an algebraic extension of \mathbb{Q} and the dimension of this extension is infinite.
5. Let \mathbb{Q} be the field of rational numbers, and \mathbb{R} be the field of real numbers. Find an element $r \in \mathbb{R}$ such that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{7})=\mathbb{Q}(r)$.
6. Let \mathbb{Q} be the field of rational numbers and \mathbb{R} be the field of real numbers. Let $a, b \in \mathbb{R}$ be algebraic over \mathbb{Q} of degree m and n, respectively. Suppose m and n are relatively prime. Show that $[\mathbb{Q}(a, b): \mathbb{Q}]=m n$. Show that the result need not hold if m and n are not prime to each other.
7. Find a splitting field S of the polynomial $x^{4}-10 x^{2}+21$ over \mathbb{Q}. Find $[S: \mathbb{Q}]$ and a basis of S over \mathbb{Q}.
8. Find a splitting field S of the polynomial $x^{p}-1$ over \mathbb{Q}, where p is a prime number. Find $[S: \mathbb{Q}]$.
9. Find a splitting field of each of the polynomials over \mathbb{Q}.
(a) $x^{4}+1$
(b) $x^{6}+x^{3}+1$
10. Prove that $x^{3}+x+\overline{1}$ is irreducible in $(\mathbb{Z} / 2 \mathbb{Z})[x]$. Write down the addition and multiplication table for the field:

$$
(\mathbb{Z} / 2 \mathbb{Z})[x] /\left(x^{3}+x+\overline{1}\right)
$$

Find a splitting field S for $x^{3}+x+\overline{1}$ over $\mathbb{Z} / 2 \mathbb{Z}$. Find $[S: \mathbb{Z} / 2 \mathbb{Z}]$ and a basis for the field extension $S \supset \mathbb{Z} / 2 \mathbb{Z}$.
11. Prove that $x^{3}+x^{2}+\overline{1}$ is irreducible in $(\mathbb{Z} / 2 \mathbb{Z})[x]$. Write down the addition and multiplication table for the field:

$$
(\mathbb{Z} / 2 \mathbb{Z})[x] /\left(x^{3}+x^{2}+\overline{1}\right) .
$$

Find a splitting field S for $x^{3}+x^{2}+\overline{1}$ over $\mathbb{Z} / 2 \mathbb{Z}$. Find $[S: \mathbb{Z} / 2 \mathbb{Z}]$ and a basis for the field extension $S /(\mathbb{Z} / 2 \mathbb{Z})$.
12. Are the splitting fields identified in Exercises 10 and 11 isomorphic as vector spaces over $\mathbb{Z} / 2 \mathbb{Z}$? Justify your answer.
13. Are the splitting fields identified in Exercises 10 and 11 isomorphic as fields? Justify your answer.
14. Factor the polynomial $x^{8}-x$ over $\mathbb{Z} / 2 \mathbb{Z}$.

