Algebraic Structures Homework 5

- 1. Suppose we adjoin an element a to \mathbb{R} (the real numbers) satisfying the relation $a^2 = 1$. Prove that the resulting ring is isomorphic to the product ring $\mathbb{R} \times \mathbb{R}$, and find the element of $\mathbb{R} \times \mathbb{R}$ which corresponds to a.
- 2. Let a be a unit in a ring R. Describe the ring R' = R[x]/(ax-1).
- 3. Let a be an element of a ring R, and let R' = R[x]/(ax-1) be the ring obtained by adjoining an inverse of a to R. Prove that the kernel of the natural homomorphism $f: R \to R'$ is the set of elements $b \in R$ such that $a^n b = 0$ for some n > 0.
- 4. Let \mathbb{Q} be the field of rational numbers. Let $F = \mathbb{Q}(\{\sqrt{p} : p \in \mathbb{Z}, p \text{ is a prime}\})$. Show that F is an algebraic extension of \mathbb{Q} and the dimension of this extension is infinite.
- 5. Let \mathbb{Q} be the field of rational numbers, and \mathbb{R} be the field of real numbers. Find an element $r \in \mathbb{R}$ such that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{7}) = \mathbb{Q}(r)$.
- 6. Let \mathbb{Q} be the field of rational numbers and \mathbb{R} be the field of real numbers. Let $a, b \in \mathbb{R}$ be algebraic over \mathbb{Q} of degree m and n, respectively. Suppose m and n are relatively prime. Show that $[\mathbb{Q}(a,b):\mathbb{Q}] = mn$. Show that the result need not hold if m and n are not prime to each other.
- 7. Find a splitting field S of the polynomial $x^4 10x^2 + 21$ over \mathbb{Q} . Find $[S:\mathbb{Q}]$ and a basis of S over \mathbb{Q} .
- 8. Find a splitting field S of the polynomial $x^p 1$ over \mathbb{Q} , where p is a prime number. Find $[S : \mathbb{Q}]$.
- 9. Find a splitting field of each of the polynomials over \mathbb{Q} .
 - (a) $x^4 + 1$ (b) $x^6 + x^3 + 1$
- 10. Prove that $x^3 + x + \overline{1}$ is irreducible in $(\mathbb{Z}/2\mathbb{Z})[x]$. Write down the addition and multiplication table for the field:

$$(\mathbb{Z}/2\mathbb{Z})[x]/(x^3+x+\overline{1}).$$

Find a splitting field S for $x^3 + x + \overline{1}$ over $\mathbb{Z}/2\mathbb{Z}$. Find $[S : \mathbb{Z}/2\mathbb{Z}]$ and a basis for the field extension $S \supset \mathbb{Z}/2\mathbb{Z}$.

11. Prove that $x^3 + x^2 + \overline{1}$ is irreducible in $(\mathbb{Z}/2\mathbb{Z})[x]$. Write down the addition and multiplication table for the field:

$$(\mathbb{Z}/2\mathbb{Z})[x]/(x^3+x^2+\overline{1})$$

Find a splitting field S for $x^3 + x^2 + \overline{1}$ over $\mathbb{Z}/2\mathbb{Z}$. Find $[S : \mathbb{Z}/2\mathbb{Z}]$ and a basis for the field extension $S/(\mathbb{Z}/2\mathbb{Z})$.

- 12. Are the splitting fields identified in Exercises 10 and 11 isomorphic as vector spaces over $\mathbb{Z}/2\mathbb{Z}$? Justify your answer.
- 13. Are the splitting fields identified in Exercises 10 and 11 isomorphic as fields? Justify your answer.
- 14. Factor the polynomial $x^8 x$ over $\mathbb{Z}/2\mathbb{Z}$.