Lecture 10: Product of groups

Lecture: Sujata Ghosh
Scribe: Priyanka Jana, Roshni Mondal

1 Topics for this lecture

In this lecture, we shall talk about the following

1. Product of groups
2. product of subgroups

2 Products of group

Let G and G^{\prime} be two groups. The product set $G \times G^{\prime}$, the set of pairs of elements (a, a^{\prime}) with a in G and a^{\prime} in G^{\prime} can be made into a group by the rule $\left(a, a^{\prime}\right) \cdot\left(b, b^{\prime}\right)=\left(a b, a^{\prime} b^{\prime}\right)$. Now we will see whether $G \times G^{\prime}$ forms a group or not.
The pair $\left(e_{G}, e_{G}^{\prime}\right)$ is the identity and the inverse of $\left(a, a^{\prime}\right)$ is $\left(a^{-1}, a^{\prime-1}\right)$. The associative law in $G \times G^{\prime}$ follows from the fact that it holds in G and G^{\prime}.
The group obtained in this way is called the product of G and G^{\prime} and is denoted by $G \times G^{\prime}$.
exercise Show that the following are homomorphisms

1. $f_{1}: G_{1} \rightarrow G_{1} \times G_{2}$ defined by $g_{1} \mapsto\left(g_{1}, g_{2}\right)$
2. $f_{2}: G_{2} \rightarrow G_{1} \times G_{2}$ defined by $g_{2} \mapsto\left(e_{G_{1}}, g_{2}\right)$
3. $f_{3}: G_{1} \times G_{2} \rightarrow G_{1}$ defined by $\left(g_{1}, g_{2}\right) \mapsto g_{1}$
4. $f_{3}: G_{1} \times G_{2} \rightarrow G_{2}$ defined by $\left(g_{1}, g_{2}\right) \mapsto g_{2}$.

Proposition 2.1 Let H and K be subgroups of a group G and let $f: H \times K \rightarrow G$ be the multiplication map defined by $f(h, k)=h k$. Its image is the set $H K=\{h k: h \in H, k \in K\}$.
(a) f is injective if and only if $H \cap K=\{1\}$.
(b) f is homomorphism from the product group $H \times K$ to G if and only if elements of K commute with elements of $H: h k=k h$.
(c) If H is a normal subgroup of G, then $H K$ is a subgroup of G.
(d) f is an isomorphism from the product group $H \times K$ to G if and only if $H \cap K=$ $\{1\}, H K=G$ and also H and K are normal subgroups of G.

Proof.
(a) If $H \cap K$ contains an element $x \neq 1$, then x^{-1} is in H, and $f\left(x^{-1}, x\right)=1=f(1,1)$, so f is not injective. Suppose that $H \cap K=\{1\}$. Let $\left(h_{1}, k_{1}\right)$ and $\left(h_{2}, k_{2}\right)$ be elements of $H \times K$ such that $h_{1} k_{1}=h_{2} k_{2}$. WE multiply both sides of this equation on the left by h_{1}^{-1} and on the right by k_{2}^{-1}, obtaining $k_{1} k_{2}^{-1}=h_{1}^{-1} h_{2}$. The left side is an element of K and the right side is an element of H. Since $H \cap K=\{1\}, k_{1} k_{2}^{-1}=h_{1}^{-1} h_{2}=1$. Then $k_{1}=k_{2}, h_{1}=h_{2}$, and $\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right)$.
(b) Let $\left(h_{1}, k_{1}\right)$ and (h_{2}, k_{2}) be elements of the product groups $H \times K$. The product of these elements in the product group $H \times K$ is $\left(h_{1} h_{2}, k_{1} k_{2}\right)$ and $f\left(h_{1} h_{2}, k_{1} k_{2}\right)=$ $h_{1} h_{2} k_{1} k_{2}$, while $f\left(h_{1}, k_{1}\right) f\left(h_{2}, k_{2}\right)=h_{1} k_{1} h_{2} k_{2}$. These elements are equal if and only if $h_{2} k_{1}=k_{1} h_{2}$.
(c) Suppose that H is normal subgroup. We note that $K H$ is a union of left cosets $k H$ with $k \in K$ and that $H K$ is a union of right cosets $H k$. Since H is normal, $k H=H k$ and therefore $H K=K H$. Closure of $H K$ under multiplication follows, because $H K H K=H H K K=H K$. Also $(h k)^{-1}=k^{-1} h^{-1}$ is in $K H=H K$. This proves closure of $H K$ under inverses.
(d) Suppose that H and K satisfy the conditions given. Then f is both injective and surjective, so it is bijective. According to (b), it is an isomorphism if and only if $h k=k h$ for all h in H and k in K, and since H is normal, the right side is in H. Since $H \cap K=\{1\}, h k h^{-1} k^{-1}=1$ and $h k=k h$. Conversely, if f is an isomorphism, one may verify the conditions listed in the isomorphic group $H \times K$ instead of in G.

Example (*) $G=\mathbb{R}^{\times}$is isomorphic to the product group $H \times K$, where $H=\{1,-1\}$ and $K=\{$ positive real numbers $\}$.
G is abelian, hence H and K both are normal subgroups of $G, H K=G$ and $H \cap K=\{1\}$. Therefore, Proposition 2.1(d) shows that G is isomorphic to the product group $H \times K$.

Proposition $2.3\left(^{*}\right)$ There are two isomorphism classes of groups of order 4, the class of the cyclic group C_{4} of order 4 and the class of the Klein Four Group, which is isomorphic to the product $C_{2} \times C_{2}$ of two groups of order 2 .

Proof. Let G be a group of order 4. THe order of any element x of G divides 4, so there are two cases to consider:
Case1: G containes an element of order 4. Then G isa cyclic group of order 4.
Case2: Every element of G except the identity has order 2.
In this case, $x=x^{-1}$ for every element x of G. Let x and y be two elements of G. Then
$x y$ has order 2. so $x y x^{-1} y^{-1}=(x y)(x y)=1$. This shows that x and y commute, and since these are arbitrary elements, G is an abelian group. So every subgroup is normal. We choose distinct elements x and y in G and we let H and K be the cyclic groups of order 2 that they generate. Proposition 2.1(d) shows that G is isomorphic to the product group $H \times K$.

Exercise* Let x be an element of order r of a group G, and let y be an element of G^{\prime} of order s. What is the order of (x, y) in the product group $G \times G^{\prime}$?

