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Lecture 11: Introduction to Rings

Lecture: Sujata Ghosh Scribe: Aranya Kumar Bal, Sandeep Chatterjee

1 Topics for this lecture

In this lecture, we shall talk about the following

1. Rings

2. Special Types of Ring

3. Subrings

2 Rings

Definition 2.1 A ring is a non-empty set, R, with two binary operations on R, one
denoted by + (addition) and the other denoted by · (multiplication), such that the
following conditions are satisfied:

1. (R,+) forms a commutative group.

2. · is associative in R.

3. For all a, b, c ∈ R:

(i) a · (b+ c) = a · b+ a · c
(ii) (b+ c) · a = b · a+ b · c

}
distributivity

(1)

(2)

We denote this ring by (R,+, ·).

• R is said to be a commutative ring if ∀a, b ∈ R, a · b = b · a.

• R is said to be a ring with an identity if there exists an element 1, say, in R, such
that 1 · a = a · 1 = a for all a ∈ R.

Examples

1. (Z, +, ·), (Q, +, ·), (R, +, ·)

2.

(
Mn(R), +

m×a
, ·

m×m

)
3. (2Z, +, ·)

4. (Z/nZ, +n, ·n)
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Exercise: Check if (Z/nZ,+n, ·n) forms a ring. Use the fact that

(a+ nZ) +n (b+ nZ) = (a+ b) + nZ
(a+ nZ) ·n (b+ nZ) = (a · b) + nZ

Different Types of Rings

In fact, the definition of a ring becomes more succinct if we define a couple more
algebraic structures.

A set S with a binary operation · is called a semi-group if · is closed in S and is
associative.

It is called a monoid if it is a semi-group and has an identity element.

[Note that a group is just a monoid with inverses.]

Then we call a set R with binary operations + and · a ring if (R,+) is a group,
(R, ·) is a semi-group and + distributes over ·.

When we later define fields, you will see that it is (F,+, ·) such that (F,+) is a group,
(F, ·) is also a group and + distributes over ·.

5. Polynomial Rings

Take any ring (R,+, ·). Consider a polynomial in x over ring R, say
a0 + a1x+ a2x

2 + . . .+ anx
n, where ai’s belong to R.

Define + and · as follows:
n∑

i=0

aix
i +

m∑
i=0

bix
i =

n∑
i=0

(ai + bi)x
i

[n ≥ m, bi = 0 for i > m]

n∑
i=0

aix
i ·

m∑
j=0

bjx
j =

l∑
k=0

ckx
k, ck =

∑
i+j=k

ajbi

Now, consider the collection of all such polynomials over ring R and denote it by
R[x], and consider + and · as defined above. Then, (R[x],+, ·) forms a ring.

This ring is called the polynomial ring over R.

Definition 2.2 Let (R; +, ·) be a ring. A polynomial, f(x), over R is an expression
of the form

f(x) =
n∑

i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n
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where n ≥ 0, and a0, a1, a2, . . . , an ∈ R. The set of all polynomials in the
indeterminate x with coefficients in R is polynomial ring, denoted by R[x].

Exercise: Show that (R[x],+, ·) forms a ring, where R is any ring.

6. Ring of Endomorphisms

• A homomorphism from a group G to itself is called an endomorphism.

• Let (G,+) be a commutative group. Let f : G → G and g : G → G be two
endomorphisms. Define +e and ·e as follows:

f +e g is defined by (f +e g)(a) = f(a) + g(a)

f · g is defined by (f · g)(a) = f(g(a))

Different Types of Rings

Rings can be given different flavours to suit our taste.

In what follows, let R be a non-trivial ring.

• If there is an element 1 ∈ R such that 1 · a = a · 1 = a for each element a ∈ R,
we say that R is a ring with unity or identity, sometimes also called an unital
ring.

• A ring R for which ab = ba for all a, b in R is called a commutative ring.

• A ring R is called a domain if, for every a, b ∈ R such that ab = 0, either a = 0
or b = 0.

• A domain R is called an integral domain if R is commutative.

In a unital ring R, an element x ∈ R is called an unit if there exists y ∈ R such that
xy = 1.

• A unital ring is called a division ring (also sometimes called a skew-field) if
every element is a unit.

• A commutative division ring is called a field.

So we have several ways to go from general rings to a field; first attach an identity,
then make it commutative and finally make every element a unit

Rings → Unital rings → Commutative unital ring → Fields

or first attach an identity to the ring, then make everything a unit, and then make
things commute
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Rings → Unital rings → Division Ring → Fields

You can try and find several other ways.

In terms of inclusiveness:

Fields ⊂ Division Rings ⊂ Domains ⊂ Rings

Fields ⊂ Integral Domains ⊂ Domains ⊂ Rings

3 End(G)

We defined two operations on the set of all endomorphisms on a group. Let us verify they
actually form a ring.
Let End(G) denote the collection of all endomorphisms over G.

1. Is (End(G),+e) a commutative group?

(a) Let f, g ∈ End(G).

(f +e g)(a1 + a2) = f(a1 + a2) + g(a1 + a2)

= f(a1) + f(a2) + g(a1) + g(a2)

= f(a1) + g(a1) + f(a2) + g(a2)

= (f +e g)(a1) + (f +e g)(a2)

So, f +e g ∈ End(G).

(b) Associativity of +e follows from associativity of + in G.

(c) Consider the zero map O : G → G, where O(a) = eG for all a ∈ G. Then, O is
the identity element.

(d) Take f ∈ End(G). Then, f−1 : G → G is defined by f−1(a) = −f(a), for all
a ∈ G. Then,

(f + f−1)(a) = eG for all a ∈ G

⇒ f + f−1 = O ∈ End(G)

(e) (f + g)(a) = f(a) + g(a) = g(a) + f(a) = (g + f)(a) for all a ∈ G. So,
(f + g) = (g + f), where f, g ∈ End(G).

So, (End(G),+) forms a commutative group.

2. Does f · g ∈ End(G)? For any a ∈ G, f · g(a) = f(g(a)). So, f · g ∈ End(G) as
composition of homomorphisms is a homomorphism.

3. Is · associative? Yes, as composition of maps is associative.
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4. Does the distributive laws hold? Take f, g, h ∈ End(G). To show:

(a) f · (g + h) = f · g + f · h
(b) (g + h) · f = g · f + h · f

(a) (f · (g + h))(a) = f(g + h)(a)

= f(g(a) + f(h(a))

= f(g(a)) + f(h(a))

= f · g(a) + f · h(a), for all a ∈ G

Hence, f(g + h) = f · g + f · h. Similarly, (b) holds. So, (End(G),+, ·) forms a
ring.

What happens when G = Z? If G = Z, then any f ∈ End(Z) is given by
f : (Z,+) → (Z,+), where for any k ∈ Z,

f(k) = f(1 + 1 + . . .+ 1) (k times)

= f(1) + f(1) + f(1) + . . .+ f(1) (k times)

= k · f(1)

So, any endomorphism f on (Z,+) is fully given by f(1).

Exercise: Prove that Composition of homomorphisms is also a homomorphism.

Exercise: Show that (g + h) · f = g · f + h · f .

Exercise∗: Prove that f(k) = k · f(1) for k ∈ Z−.

4 Subrings

A subring S of a ring R is a ring with the operations on R restricted to S.

Homework: Find all subrings of (Z,+, ·).

5 Miscellaneous facts about small rings

The smallest possible group: {e}

What about smallest possible ring? Clearly {0} is a ring. In fact, this ring has both
identities, and they are the same.
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What happens if R ̸= {0}, that is, there is at least one non-zero element in R?
We will show that in such a ring, if 1 exists, then for sure 1 ̸= 0. To prove this, we need a
small lemma first.

Lemma 5.1 In a ring R, a · 0 = 0 for all a ∈ R.

Proof. We use the fact that 0 + 0 = 0. Then we have

a · 0 = a · (0 + 0)

= a · 0 + a · 0

Since + forms a group, it is cancellative and hence by cancelling a a · 0 on both sides, we
get 0 = a · 0. 2

Claim 5.2 If R ̸= {0}, then 1 ̸= 0 in R.

Proof. Suppose not. Now since R ̸= {0}, there is a ∈ R such that a ̸= 0. Then
0 = a · 0 = a · 1 = a which is a contradiction. 2

Fun ring fact

One can wonder why we want the addition to be abelian in a ring. Let’s see how far
exploration can take us.

Call (R,+, ·) a near-ring if R satisfies the following:

• (R,+) forms a group

• (R, ·) forms a semi-group

• + distributes over ·.

Note the difference with a ring; in a ring, + forms an abelian group, here we remove
that restriction. We do get a nice result though.

Proposition 5.3 A near ring with identity is a unital ring.

Proof. Let 1 be the identity. Then for any x and y

(1 + 1)(x+ y) = 1(x+ y) + 1(x+ y) = x+ y + x+ y

(1 + 1)(x+ y) = (1 + 1)x+ (1 + 1)y = x+ x+ y + y

Equating them and cancelling terms gives y+x = x+y and thus + is abelian. Hence
R is a unital ring. 2

If · does not have an identity, can we still force a near ring to be a ring? No, as the
following construction shows.
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Take the set as S3, the symmetric group on 3 elements. Let + be the group operation
on S3 and · be defined as a · b = e for any a, b ∈ S3. One can verify this is a near-ring
but not a ring.

In fact, in the above example · is commutative. We can have non-commutative near
rings as well. Consider the following example. Take the set as S3 like above. Let
+ be the group operation on S3 again but let · be defined as a · b = aba−1b−1 for
any a, b ∈ S3. One can verify this is a near-ring but not a ring, and in fact is a
non-commutative near-ring.
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