Elements of Algebraic Structures March 5 2024

Lecture 11: Introduction to Rings

Lecture: Sujata Ghosh Scribe: Aranya Kumar Bal, Sandeep Chatterjee

1 Topics for this lecture

In this lecture, we shall talk about the following
1. Rings
2. Special Types of Ring

3. Subrings

2 Rings

Definition 2.1 A ring is a non-empty set, R, with two binary operations on R, one
denoted by + (addition) and the other denoted by - (multiplication), such that the
following conditions are satisfied:

1. (R,4) forms a commutative group.
2. - is associative in R.
3. For all a,b,c € R:

(i)a-(b+c)=a-b+a-c

distributivit
(ii) (b+c)-a:b-a—|—b-c} LTIy

We denote this ring by (R, +, ).

e R is said to be a commutative ring if Va,b € R, a-b=10b"a.

e R is said to be a ring with an identity if there exists an element 1, say, in R, such
that 1-a=a-1=a for all a € R.

Examples

L. (Zv +, ')’ (Q, +, ')a (R’ =+, )

2. (MR(R), + ., - )
mxa MXm

3. (22, +, )

4. (Z/nZ, 4n, *n)
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Exercise: Check if (Z/nZ, 4+, ) forms a ring. Use the fact that

(a+nZ)+, (b+nZ)=(a+b)+nZ
(a+nZ) -y (b+nZ)=(a-b)+nZ

Different Types of Rings

In fact, the definition of a ring becomes more succinct if we define a couple more
algebraic structures.

A set S with a binary operation - is called a semi-group if - is closed in S and is
associative.

It is called a monoid if it is a semi-group and has an identity element.
[Note that a group is just a monoid with inverses.]

Then we call a set R with binary operations + and - a ring if (R,+) is a group,
(R, ") is a semi-group and + distributes over -.

When we later define fields, you will see that it is (F, +, -) such that (F,+) is a group,
(F,-) is also a group and + distributes over -.

5. Polynomial Rings

Take any ring (R, +, ). Consider a polynomial in = over ring R, say
ag + a1z + asx® + ... + a,x™, where a;’s belong to R.

Define + and - as follows:

n

z": a;xt + i bzt = Z(ai + b))zt
=0 =0

i=0
[n > m, b; =0 for i > m)|
!

n m
Zaixz . ijx] = chxk, cr = Z a;b;
i—0 =0

k=0 i+j=k

Now, consider the collection of all such polynomials over ring R and denote it by
R[x], and consider + and - as defined above. Then, (R[z],+,-) forms a ring.

This ring is called the polynomial ring over R.

Definition 2.2 Let (R;+,-) be a ring. A polynomial, f(x), over R is an expression
of the form

n
f(.’L') = Zaixi = a0+a1$+a2x2 + - Fapa”
=0
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where n > 0, and ag, a1, a9, ...,a, € R. The set of all polynomials in the
indeterminate x with coefficients in R is polynomial ring, denoted by R[z].

Exercise: Show that (R[z],+,-) forms a ring, where R is any ring.

6. Ring of Endomorphisms

e A homomorphism from a group G to itself is called an endomorphism.
e Let (G, +) be a commutative group. Let f: G — G and g : G — G be two

endomorphisms. Define +. and -, as follows:

[ +e g is defined by (f 4. g)(a) = f(a) + g(a)
[+ g is defined by (f - g)(a) = f(g(a))

Different Types of Rings

Rings can be given different flavours to suit our taste.

In what follows, let R be a non-trivial ring.

e If there is an element 1 € R such that 1-a =a -1 = a for each element a € R,
we say that R is a ring with unity or identity, sometimes also called an unital
ring.

e A ring R for which ab = ba for all a,b in R is called a commutative ring.

e A ring R is called a domain if, for every a,b € R such that ab = 0, either a = 0
or b= 0.

e A domain R is called an integral domain if R is commutative.

In a unital ring R, an element = € R is called an unit if there exists y € R such that
zy = 1.

e A unital ring is called a division ring (also sometimes called a skew-field) if
every element is a unit.

e A commutative division ring is called a field.

So we have several ways to go from general rings to a field; first attach an identity,
then make it commutative and finally make every element a unit
Rings — Unital rings — Commutative unital ring — Fields

or first attach an identity to the ring, then make everything a unit, and then make
things commute
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Rings — Unital rings — Division Ring — Fields
You can try and find several other ways.
In terms of inclusiveness:
Fields C Division Rings C Domains C Rings

Fields C Integral Domains C Domains C Rings

3 End(G)

We defined two operations on the set of all endomorphisms on a group. Let us verify they
actually form a ring.
Let End(G) denote the collection of all endomorphisms over G.

1. Is (End(G), +) a commutative group?
(a) Let f,g € End(G).

( )+ g(a1 + a2)

(a1) + f(a2) + g(a1) + g(az)
( (a1) + f(az) + g(a2)
= (f +eg)(a) + (f +e 9)(az)

(f +eg)(ar+a2) = f

So, f+e g € End(G).
(b) Associativity of +. follows from associativity of + in G.

(c) Consider the zero map O : G — G, where O(a) = e for all a € G. Then, O is
the identity element.

(d) Take f € End(G). Then, f~!: G — G is defined by f~!(a) = —f(a), for all
a € G. Then,

(f+f YY) =egforallacG
= f+f'=0¢€EndG)

(e) (f +9)(a)= f(a)+g(a) = g(a) + f(a) = (g + f)(a) for all a € G. So,
(f+9)=(g+ f), where f,g € End(G).

So, (End(G), +) forms a commutative group.

2. Does f-g € End(G)? For any a € G, f-g(a) = f(g(a)). So, f-g € End(G) as
composition of homomorphisms is a homomorphism.

3. Is - associative? Yes, as composition of maps is associative.

11-4



4. Does the distributive laws hold? Take f, g, h € End(G). To show:

(@) f-(g+h)=F-g+f-h
(b) (9+h)-f=g-f+h-f

(a) (f-(g+h))(a) = f(g+h)(a)

= f(g(a) + f(h(a))
= f(9(a)) + f(h(a))
=f-g(a)+ f-h(a), foralla e G

Hence, f(g+h) = f-g+ f - h. Similarly, (b) holds. So, (End(G),+,-) forms a

ring.

What happens when G = Z? If G = Z, then any f € End(Z) is given by
f:(Z,+)— (Z,+), where for any k € Z,
fk)y=f(1+1+...4+1) (k times)
=f()+f1)+ f(1)+...+ f(1) (k times)
— k- (1)

So, any endomorphism f on (Z,+) is fully given by f(1).

Exercise: Prove that Composition of homomorphisms is also a homomorphism.

Exercise: Show that (9+h)-f=¢g-f+h-f.

Exercise*: Prove that f(k) =k - f(1) for k € Z~.

4 Subrings

A subring S of a ring R is a ring with the operations on R restricted to S.

Homework: Find all subrings of (Z, +, ).

5 Miscellaneous facts about small rings

The smallest possible group: {e}

What about smallest possible ring? Clearly {0} is a ring. In fact, this ring has both
identities, and they are the same.
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What happens if R # {0}, that is, there is at least one non-zero element in R?
We will show that in such a ring, if 1 exists, then for sure 1 # 0. To prove this, we need a
small lemma first.

Lemma 5.1 In a ring R, a-0=0 for all a € R.
Proof. We use the fact that 0 4 0 = 0. Then we have

a-0=a-(0+0)
=a-0+a-0

Since + forms a group, it is cancellative and hence by cancelling a a - 0 on both sides, we
get 0 =a-0. O

Claim 5.2 If R # {0}, then 1#0 in R.

Proof. Suppose not. Now since R # {0}, there is a € R such that a # 0. Then
0=a-0=a-1=a which is a contradiction. O

Fun ring fact

One can wonder why we want the addition to be abelian in a ring. Let’s see how far
exploration can take us.

Call (R,+, ) a near-ring if R satisfies the following:
e (R,+) forms a group
e (R,-) forms a semi-group

e -+ distributes over -.

Note the difference with a ring; in a ring, + forms an abelian group, here we remove
that restriction. We do get a nice result though.

Proposition 5.3 A near ring with identity is a unital ring.
Proof. Let 1 be the identity. Then for any = and y
A+D@+y)=lz+y)+1l(z+y) =z+y+z+y

A+DE+y)=0+Dz+(1+Dy=a+z+y+y

Equating them and cancelling terms gives y+2 = +y and thus + is abelian. Hence
R is a unital ring. O

If - does not have an identity, can we still force a near ring to be a ring? No, as the
following construction shows.
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Take the set as S3, the symmetric group on 3 elements. Let + be the group operation
on S3 and - be defined as a-b = e for any a,b € S3. One can verify this is a near-ring
but not a ring.

In fact, in the above example - is commutative. We can have non-commutative near
rings as well. Consider the following example. Take the set as S3 like above. Let
+ be the group operation on S3 again but let - be defined as a - b = aba='b~! for
any a,b € S3. One can verify this is a near-ring but not a ring, and in fact is a
non-commutative near-ring.
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