1 Topics for this lecture

In this lecture, we shall talk about the following

1. Ring Homomorphism
2. Ideals and Principal Ideal
3. Quotient Rings
4. Units in a Ring
5. Introduction to Fields

2 Ring Homomorphism

Definition 2.1 A function $f:(R,+, \cdot) \rightarrow\left(R^{\prime},+^{\prime},,^{\prime}\right)$ is said to be a ring homomorphism if the following hold for all $r_{1}, r_{2} \in R$:

1. $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+^{\prime} f\left(r_{2}\right)$
2. $f\left(r_{1} \cdot r_{2}\right)=f\left(r_{1}\right) \cdot{ }^{\prime} f\left(r_{2}\right)$

2.1 Kernel of a ring homomorphism

Let R and R^{\prime} be two rings, and let $f: R \rightarrow R^{\prime}$ be a ring homomorphism. Then, kernel of f, denoted $\operatorname{ker} f$ is defined as follows:

$$
\operatorname{ker} f=\left\{r \in R \mid f(r)=0_{R^{\prime}}\right\}
$$

Question: Suppose $a, b \in \operatorname{ker} f$. Is $a+b \in \operatorname{ker} f$?

$$
f(a+b)=f(a)+f(b)=0+0=0
$$

So, $a+b \in \operatorname{ker} f$.
Question: Suppose $a, b \in \operatorname{ker} f$. Is $a \cdot b \in \operatorname{ker} f$?

$$
f(a \cdot b)=f(a) \cdot f(b)=0 \cdot 0=0
$$

So, $a \cdot b \in \operatorname{ker} f$.
Question: Suppose $r \in R$ and $a \in \operatorname{ker} f$. Do $r+a$ and $r \cdot a$ belong to $\operatorname{ker} f$?

$$
f(r+a)=f(r)+f(a)=f(r)+0_{R^{\prime}}=f(r)
$$

which may or may not be 0 , hence, $r+a$ may not belong to ker f.

$$
f(r \cdot a)=f(r) \cdot f(a)=f(r) \cdot 0_{R^{\prime}}=0_{R^{\prime}}
$$

So, $r \cdot a$ will always be in $\operatorname{ker} f$.
So, we can say the following now.
Theorem 2.2 For $f: R \rightarrow R^{\prime}$ a ring homomorphism

- ker f forms a subgroup of R under +
- If $r \in R$ and $a \in \operatorname{ker} f$, then $r \cdot a \in \operatorname{ker} f$

This leads to the notion of ideals.

3 Ideals of a ring R

Let R be a commutative ring with identity. I subset of R is said to be an ideal of R if:

- $(I,+)$ is a subgroup of $(R,+)$
- For any $r \in R, a \in I, r \cdot a \in I$

Examples:

1. $\operatorname{ker} f$, where f is a ring homomorphism
2. $\left\{0_{R}\right\}$
3. R, the entire ring
4. take any $a \in R$, Consider $\langle a\rangle=\{r \cdot a \mid r \in R\}$ then $\langle a\rangle$ forms an ideal of R. This is called the principal ideal generated by a in R.

Exercise: Prove that $\langle a\rangle$ is an ideal of R

Homework: What are the ideals of $(\mathbb{Z},+, \cdot)$?

Homework: What are the ideals of $\left(\mathbb{Z} / p^{k} \mathbb{Z},+, \cdot\right)$, where p is a prime number, $k \geq 1$?

Now, we have that for any homomorphism f, we have an ideal given by ker f.
How about the opposite side? Given an ideal I of a ring R, can we get a homomorphism f such that ker $f=I$? To answer this question, let us introduce the concept of quotient rings

4 Quotient Ring

Let R be a ring and I be an ideal of R. Since $(I,+)$ is a subgroup of $(R,+)$, we can define the quotient group $(R / I,+$), where $R / I=\{r+I: r \in R\}$, and

$$
(r+I)+\left(r^{\prime}+I\right)=\left(r+r^{\prime}\right)+i
$$

We have that $(R / I,+)$ forms a commutative group.
Now, define

$$
(r+I) \cdot\left(r^{\prime}+I\right)=r \cdot r^{\prime}+I
$$

Exercise: Explain the definition of $(r+I) \cdot\left(r^{\prime}+I\right)$
Note that $r+I, r^{\prime}+I, r r^{\prime}+I$ are all subsets of R.
Take $a \in r+I$ and $b \in r^{\prime}+I$. Then, $a=r+i$ and $b=r^{\prime}+i^{\prime}$ for some $i, i^{\prime} \in I$. Now, we have

$$
a \cdot b=(r+i) \cdot\left(r^{\prime}+i^{\prime}\right)=r r^{\prime}+r i^{\prime}+i r^{\prime}+i i^{\prime}=r r^{\prime}+i^{\#}, \text { where } i^{\#} \in I
$$

Exercise: Prove that $i^{\#} \in I$
So, we see that the definition does make sense.

Exercise: Show the following :

1. • is associative in R / I
2. Distributive laws hold in R / I.

So, $(R / I,+, \cdot)$ does form a ring. Now, since R is commutative with identity, so is R / I with $(1+I)$ serving as the identity. So, $(R / I,+, \cdot)$ is a commutative ring with identity.

Coming back to our original question regarding a ring R and its ideal I, consider $f: R \rightarrow R / I: r \rightarrow r+I$. we have ker $f=I$

5 Units in a ring R

An element $a \in R$ is said to be a unit in an unital ring R if there exists $b \in R$ such that $a \cdot b=1$.

Examples:

1. What are the units in $(\mathbb{Z},+, \cdot)$?

$$
\{1,-1\}
$$

2. What are the units in $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot)$?
$\{[1],[3]\}$
3. What are the units in $(\mathbb{Z} / 5 \mathbb{Z},+, \cdot)$?

All the non-zero elements of $\mathbb{Z} / 5 \mathbb{Z}$
4. What are the units in $\left(M_{n}(\mathbb{R}),+, \cdot\right)$?

All the elements of $G L_{n}(\mathbb{R})$. [Note that this is a non-commutative ring]

6 Field

Definition 6.1 A field is a commutative ring with identity such that every non-zero element is a unit.

From the examples above, $(\mathbb{Z} / 5 \mathbb{Z},+, \cdot)$ forms a field. Other examples are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Complete Definition of a Field

A field is a nonempty set F with at least two elements and binary operations + and \cdot, denoted $(F,+, \cdot)$, and satisfying the following field axioms:

- Associativity of addition: Given any $a, b, c \in F,(a+b)+c=a+(b+c)$.
- Commutativity of addition: Given any $a, b \in F, a+b=b+a$.
- Additive identity: There exists an element $0_{F} \in F$ such that for all $a \in F$, $a+0_{F}=0_{F}+a=a$.
- Additive inverse: Given any $a \in F$, there exists a $b \in F$ such that $a+b=$ $b+a=0_{F}$.
- Associativity of multiplication: Given any $a, b, c \in F,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
- Commutativity of multiplication: Given any $a, b \in F, a \cdot b=b \cdot a$.
- Multiplicative identity: There exists an element $1_{F} \in F$ such that for all $a \in F$, $1_{F} \cdot a=a \cdot 1_{F}=a$.
- Multiplicative inverse: For all $a \in F, a \neq 0_{F}$, there exists a $b \in F$ such that $a \cdot b=b \cdot a=1_{F}$.
- Left distributivity: For all $a, b, c \in F, a \cdot(b+c)=a \cdot b+a \cdot c$.
- Right distributivity: For all $a, b, c \in F,(a+b) \cdot c=a \cdot c+b \cdot c$.

If you had read the pervious lecture scribe, you would quickly realise that this just saying that a field is nothing but $(F,+, \cdot)$ such that + and \cdot both form groups and + distributes over \cdot.

7 Ideals of a field R

Question: What are the ideals of a field R ?

Since a field is also a ring, clearly $\left\{0_{R}\right\}$ and R are ideals of R.
A fun theorem now says
Theorem 7.1 A field has no other ideals.
Proof. If I is any other ideal, then say $a \in I, a \neq 0$. Then there is some $b \in R$ such that $a b=1$. Since I is an ideal, $1=a b \in I$ and thus $I=R$ a contradiction.
The next fun theorem states that things are even funnier.
Theorem 7.2 Any non-trivial commutative ring R with identity with only 2 ideals is a field.

Proof. All we have to show is that every element has inverses. Since R is non-trivial, there is some element $a \in R$ with $a \neq 0$. Then clearly the principal ideal (a) is not $\{0\}$ as $a \in(a)$. Then $(a)=R$. Then $1 \in(a)$. Thus $1=a b$ for some $b \in R$ and thus b is the inverse of a and we are done.

We can summarise the fun theorems as follows.
Theorem 7.3 Let R be a commutative ring with identity. Then the following are equivalent.

1. R is a field.
2. The only ideals of R are $\{0\}$ and R

Example: Ideals of $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot)$ are $\{[0]\},\{[0],[2]\}, \mathbb{Z} / 4 \mathbb{Z}$. Since the number of ideals more than 2 , this is not a field.

Ideals of a general unital ring

Let R be a ring with identity. Then the definition of ideals we made directly does not make sense since $a r \in I$ does not mean $r a \in I$. So we separate them out into three parts.

A subset $I \subset R$ is called a left ideal of R if $a, b \in I \Rightarrow a+b \in I$ and $a \in I \Rightarrow r a \in I$ for all $a \in R$.

A subset $I \subset R$ is called a right ideal of R if $a, b \in I \Rightarrow a+b \in I$ and $a \in I \Rightarrow a r \in I$ for all $r \in R$.

A subset is called a both sided ideal if it is both a left and right ideal. Note that for a commutative ring, all the three notions are the same.

Exercise*: Let R be a ring with identity. Show that the following are equivalent.

1. R is a division ring.
2. The only left ideals of R are $\{0\}$ and R.
