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1 Topics for this lecture

In this lecture, we shall talk about the following

1. Homomorphism from Z to some Ring

2. Characteristics of a Field

3. Size of Finite Field

4. Integral Domain

2 Homomorphism from Z to a Ring (R)

Let’s discuss about homomorphisms from Z to some Ring R.
Consider a homomorphism f : Z → R.
What is Ker f?
-Suppose, R = 0R then Ker f = Z.
-Suppose, R = Z,Q,R then Ker f = 0. [Note: The Homomorphism preserves the
additive and multiplicative identity. A homomorphism from Z to Z will take 1 to 1. In
general, a homomorphism from Z to R will take 1 to 1R.]
-Suppose, R = Z/nZ then Ker f = nZ.

2.1 What happens to Ker f if R is a field?

Proposition 2.1 If R is a field and f : Z → R is a homomorphism, then Ker f is
either 0 or pZ for some prime p.

Proof. Suppose, Ker f ̸= 0. Now, Ker f is an ideal of Z. So, Ker f = nZ for some
n ∈ Z. We need to show that n is prime. Suppose not! Then without loss of generality, we
can write n = a.b where a, b ∈ Z.
Now, we have f(n) = 0 =⇒ f(a.b) = 0 =⇒ f(a).f(b) = 0.
Then either f(a) = 0 or f(b) = 0.
Suppose f(a) ̸= 0. To show that f(b) = 0
Since, f(a) ̸= 0, (f(a))−1 exists as R is a field. So,
f(a).f(b) = 0 =⇒ (f(a))−1(f(a).f(b)) = 0 =⇒ f(b) = 0
So, a ∈ Ker f or b ∈ Ker f .
Then, a ∈ nZ or b ∈ nZ, that is either a is a multiple of n or b is a multiple of n, a
contradiction. Thus, n is a prime number. This completes the proof. 2
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3 Characteristic of a Field

Let F be a field. Consider the homomorphism f : Z → F . Then, by the above result, we
have Ker f = {0} or pZ, for some prime p. If Ker f = {0}, we say that the field F has
characteristic 0. If Ker f = pZ, then we say that the field F has characteristic p.
Examples:
-Fields with characteristic 0: R,Q
-Fields with characteristic p: Z/pZ

4 Size of a Finite Field

Proposition 4.1 If F is a finite field then |F | = pn for some prime p and some
positive integer n.

Proof. Let F be a finite field. Consider, the homomorphism f : Z → F . Now, Ker f ̸= 0,
as Z is an infinite set and F is finite. So, Ker f = pZ for some prime p.
Now, consider a function g : Z/pZ → F defined as: g(z + pZ) = f(z)

• Is g well-defined?

Suppose, z1 + pZ = z2 + pZ
Then, z1 − z2 ∈ pZ
Then, f(z1 − z2) = 0F (Since pZ is the kernel)

Then, f(z1) = f(z2)

So, g(z1 + pZ) = g(z2 + pZ)

• Is g injective?

Let g(z1 + pZ) = g(z2 + pZ)
Then, f(z1) = f(z2)

Then, z1 − z2 ∈ pZ
Then, z1 + pZ = z2 + pZ.

• Is g a homomorphism?

g((z1 + pZ) + (z2 + pZ))
= g((z1 + z2) + pZ)
= f(z1 + z2)

= f(z1) + f(z2)

= g(z1 + pZ) + g(z2 + pZ)
Also, g((z1 + pZ).(z2 + pZ))
= g((z1.z2) + pZ)
= f(z1.z2)
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= f(z1).f(z2)

= g(z1 + pZ).g(z2 + pZ)

Thus, g is an injective homomorphism from Z/pZ → F . Then, Z/pZ is isomorphic to
Image(g) in F . Then one can identify elements of Z/pZ with elements of Image(g), and
consider F to be a vector space over the field Z/pZ.
But F is a finite vector space in particular a finite-dimensional vector space over Z/pZ.
Let dim(F ) = n. Then, any v ∈ F can be written uniquely as a1v1 + a2v2 + · · ·+ anvn,
where ai ∈ Z/pZ ∀i and {v1, v2, · · · , vn} is a basis on F over Z/pZ. This provides us with
a bijection between F and (Z/pZ)n. But |(Z/pZ)n| = pn. So, |F | = pn.
This completes the proof. 2

5 Integral Domains

A commutative ring with identity is said to be an integral domain if for all a, b ∈ R,
a.b = 0 implies either a = 0 or b = 0.
Examples:
-Z
-any field
-F [x], where F is a field -Consider Z/4Z and consider [2] ∈ Z/4Z. Now, [2] ̸= [0], but
[2][2] = [0]. Thus, Z/4Z is not an integral domain.
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Exercise Prove that any finite integral domain is a field.

Proposition 5.1 Any finite integral domain is a field.

Proof. To prove that any finite integral domain is a field, we need to show that every
nonzero element has a multiplicative inverse.
Let D be a finite integral domain. Since D is finite, every nonzero element a ∈ D
generates a cyclic subgroup of D×, the group of units of D, under multiplication.
Now, consider an arbitrary nonzero element a ∈ D. We’ll denote the cyclic subgroup
generated by a as ⟨a⟩. Since D is an integral domain, ⟨a⟩ is closed under multiplication
and contains the identity element 1.
Since D is finite, there exists a positive integer n such that an = 1, where 1 is the
multiplicative identity of D. This means that a has an inverse, namely an−1, because
a · an−1 = an−1 · a = an = 1.
Therefore, every nonzero element of D has a multiplicative inverse, and D is a field by
definition.
This concludes the proof that any finite integral domain is a field. 2

Proposition 5.2 Any integral domain can be extended to a field.

What does this result say?
If R is an integral domain, then there exists a field F such that there is an injective
homomorphism h : R → F . For example, The integral domain, Z can be extended to the
field of rational numbers, Q.
The proof is to be discussed in the next lecture.
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