Elements of Algebraic Structures

March 24 2024

Lecture 14: More on Fields

Lecture: Sujata Ghosh

Scribe: Shramana Dey

1 Topics for this lecture

In this lecture, we shall talk about the following

- 1. Homomorphism from \mathbbm{Z} to some Ring
- 2. Characteristics of a Field
- 3. Size of Finite Field
- 4. Integral Domain

2 Homomorphism from \mathbb{Z} to a Ring (R)

Let's discuss about homomorphisms from \mathbb{Z} to some Ring R.

Consider a homomorphism $f : \mathbb{Z} \to R$.

What is Ker f?

-Suppose, $R = 0_R$ then $Ker f = \mathbb{Z}$.

-Suppose, $R = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ then Ker f = 0. [Note: The Homomorphism preserves the additive and multiplicative identity. A homomorphism from \mathbb{Z} to \mathbb{Z} will take 1 to 1. In general, a homomorphism from \mathbb{Z} to R will take 1 to 1_R .] -Suppose, $R = \mathbb{Z}/n\mathbb{Z}$ then Ker $f = n\mathbb{Z}$.

2.1 What happens to Ker f if R is a field?

Proposition 2.1 If R is a field and $f : \mathbb{Z} \to R$ is a homomorphism, then Ker f is either 0 or $p\mathbb{Z}$ for some prime p.

Proof. Suppose, $Ker \ f \neq 0$. Now, $Ker \ f$ is an ideal of \mathbb{Z} . So, $Ker \ f = n\mathbb{Z}$ for some $n \in \mathbb{Z}$. We need to show that n is prime. Suppose not! Then without loss of generality, we can write n = a.b where $a, b \in \mathbb{Z}$. Now, we have $f(n) = 0 \implies f(a.b) = 0 \implies f(a).f(b) = 0$. Then either f(a) = 0 or f(b) = 0. Suppose $f(a) \neq 0$. To show that f(b) = 0Since, $f(a) \neq 0$, $(f(a))^{-1}$ exists as R is a field. So, $f(a).f(b) = 0 \implies (f(a))^{-1}(f(a).f(b)) = 0 \implies f(b) = 0$ So, $a \in Ker \ f$ or $b \in Ker \ f$. Then, $a \in n\mathbb{Z}$ or $b \in n\mathbb{Z}$, that is either a is a multiple of n or b is a multiple of n, a

contradiction. Thus, n is a prime number. This completes the proof.

3 Characteristic of a Field

Let F be a field. Consider the homomorphism $f : \mathbb{Z} \to F$. Then, by the above result, we have $Ker f = \{0\}$ or $p\mathbb{Z}$, for some prime p. If $Ker f = \{0\}$, we say that the field F has characteristic 0. If $Ker f = p\mathbb{Z}$, then we say that the field F has characteristic p. **Examples:**

-Fields with characteristic 0: \mathbb{R}, \mathbb{Q} -Fields with characteristic $p: \mathbb{Z}/p\mathbb{Z}$

4 Size of a Finite Field

Proposition 4.1 If F is a finite field then $|F| = p^n$ for some prime p and some positive integer n.

Proof. Let F be a finite field. Consider, the homomorphism $f : \mathbb{Z} \to F$. Now, $Ker \ f \neq 0$, as \mathbb{Z} is an infinite set and F is finite. So, $Ker \ f = p\mathbb{Z}$ for some prime p. Now, consider a function $g : \mathbb{Z}/p\mathbb{Z} \to F$ defined as: $g(z + p\mathbb{Z}) = f(z)$

• Is g well-defined?

Suppose, $z_1 + p\mathbb{Z} = z_2 + p\mathbb{Z}$ Then, $z_1 - z_2 \in p\mathbb{Z}$ Then, $f(z_1 - z_2) = 0_F$ (Since $p\mathbb{Z}$ is the kernel) Then, $f(z_1) = f(z_2)$ So, $g(z_1 + p\mathbb{Z}) = g(z_2 + p\mathbb{Z})$

• Is g injective?

Let $g(z_1 + p\mathbb{Z}) = g(z_2 + p\mathbb{Z})$ Then, $f(z_1) = f(z_2)$ Then, $z_1 - z_2 \in p\mathbb{Z}$ Then, $z_1 + p\mathbb{Z} = z_2 + p\mathbb{Z}$.

• Is g a homomorphism?

$$g((z_{1} + p\mathbb{Z}) + (z_{2} + p\mathbb{Z}))$$

= $g((z_{1} + z_{2}) + p\mathbb{Z})$
= $f(z_{1} + z_{2})$
= $f(z_{1}) + f(z_{2})$
= $g(z_{1} + p\mathbb{Z}) + g(z_{2} + p\mathbb{Z})$
Also, $g((z_{1} + p\mathbb{Z}).(z_{2} + p\mathbb{Z}))$
= $g((z_{1}.z_{2}) + p\mathbb{Z})$
= $f(z_{1}.z_{2})$

$$= f(z_1).f(z_2)$$

= $g(z_1 + p\mathbb{Z}).g(z_2 + p\mathbb{Z})$

Thus, g is an injective homomorphism from $\mathbb{Z}/p\mathbb{Z} \to F$. Then, $\mathbb{Z}/p\mathbb{Z}$ is isomorphic to Image(q) in F. Then one can identify elements of $\mathbb{Z}/p\mathbb{Z}$ with elements of Image(q), and consider F to be a vector space over the field $\mathbb{Z}/p\mathbb{Z}$.

But F is a finite vector space in particular a finite-dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$. Let $\dim(F) = n$. Then, any $v \in F$ can be written uniquely as $a_1v_1 + a_2v_2 + \cdots + a_nv_n$, where $a_i \in \mathbb{Z}/p\mathbb{Z} \ \forall i \text{ and } \{v_1, v_2, \cdots, v_n\}$ is a basis on F over $\mathbb{Z}/p\mathbb{Z}$. This provides us with a bijection between F and $(\mathbb{Z}/p\mathbb{Z})^n$. But $|(\mathbb{Z}/p\mathbb{Z})^n| = p^n$. So, $|F| = p^n$. This completes the proof.

Definition: A vector space consists of a set V (elements of V are called vectors), a field \mathbb{F} (elements of \mathbb{F} are called scalars), and two operations

- An operation called *vector addition* that takes two vectors $v, w \in V$, and produces a third vector, written $v + w \in V$.
- An operation called *scalar multiplication* that takes a scalar $c \in \mathbb{F}$ and a vector $v \in V$, and produces a new vector, written $cv \in V$.

which satisfy the following conditions (called *axioms*).

- 1. Associativity of vector addition: (u + v) + w = u + (v + w) for all $u, v, w \in V.$
- 2. Existence of a zero vector: There is a vector in V, written 0 and called the **zero vector**, which has the property that u + 0 = u for all $u \in V$
- 3. Existence of negatives: For every $u \in V$, there is a vector in V, written -u and called the **negative of** u, which has the property that u + u(-u) = 0.
- 4. Associativity of multiplication: (ab)u = a(bu) for any $a, b \in \mathbb{F}$ and $u \in V$.
- 5. Distributivity: (a + b)u = au + bu and a(u + v) = au + av for all $a, b \in \mathbb{F}$ and $u, v \in V$.
- 6. Unitarity: 1u = u for all $u \in V$.

Integral Domains $\mathbf{5}$

A commutative ring with identity is said to be an integral domain if for all $a, b \in R$, a.b = 0 implies either a = 0 or b = 0.

Examples:

-Z

-any field

-F[x], where F is a field -Consider $\mathbb{Z}/4\mathbb{Z}$ and consider $[2] \in \mathbb{Z}/4\mathbb{Z}$. Now, $[2] \neq [0]$, but [2][2] = [0]. Thus, $\mathbb{Z}/4\mathbb{Z}$ is not an integral domain.

Exercise Prove that any finite integral domain is a field.

Proposition 5.1 Any finite integral domain is a field.

Proof. To prove that any finite integral domain is a field, we need to show that every nonzero element has a multiplicative inverse.

Let D be a finite integral domain. Since D is finite, every nonzero element $a \in D$ generates a cyclic subgroup of D^{\times} , the group of units of D, under multiplication. Now, consider an arbitrary nonzero element $a \in D$. We'll denote the cyclic subgroup generated by a as $\langle a \rangle$. Since D is an integral domain, $\langle a \rangle$ is closed under multiplication and contains the identity element 1.

Since D is finite, there exists a positive integer n such that $a^n = 1$, where 1 is the multiplicative identity of D. This means that a has an inverse, namely a^{n-1} , because $a \cdot a^{n-1} = a^{n-1} \cdot a = a^n = 1$.

Therefore, every nonzero element of D has a multiplicative inverse, and D is a field by definition.

This concludes the proof that any finite integral domain is a field.

Proposition 5.2 Any integral domain can be extended to a field.

What does this result say?

If R is an integral domain, then there exists a field F such that there is an injective homomorphism $h: R \to F$. For example, The integral domain, \mathbb{Z} can be extended to the field of rational numbers, \mathbb{Q} .

The proof is to be discussed in the next lecture.