March 19 2024

Lecture 15: On Integral Domain

Lecture: Sujata Ghosh

Abstract Algebra

Scribe: Basudeb Roy, Ritam Manna Mitra

## Topics for this lecture

In this lecture, we shall talk about the following

- 1. Proof of the theorem
- 2. Quotient Field

Let us begin this lecture with the proof of the following theorem.

**Theorem 1** Any integral domain can be extended to a field.

*Proof.* Let R be an integral domain. Now, consider  $s = R \times R \setminus \{0_R\}$ . Now we define a relation  $\sim$  on S as follows:-

$$(a,b) \sim (c,d)$$
 iff ad = cd

. Since it is trivial that  $\sim$  is reflexive and symmetric. To show that  $\sim$  is transitive, let us assume that (a, b)  $\sim$  (c, d) and (c, d)  $\sim$  (e, f). Hence, we can say that ad = bc and ce = df. Then

$$adcf = bcde$$
$$\implies adcf - bcde = 0$$
$$\implies cd(af - be) = 0$$

Then, either cd = 0 or (af - be) = 0. Now, analyze the following cases:-

- if cd = 0, then c = 0 as  $d \neq 0$ . Therefore, a = c = e = 0 and so  $(a, b) \sim (e, f)$ .
- If  $cd \neq 0$  then af de = 0. Therefore af = de implies that  $(a, b) \sim (e, f)$ .

Hence, ~ is an equivalent relation. Then S can be partitioned into equivalent classes. Let a|b denote the equivalence class containing (a, b) i.e., a/b = [(a, b)]. Let  $F = S/\sim = \{a/b \mid (a, b) \in \mathbb{R} \times \mathbb{R} \setminus \{0\}\}$ . Now, let us define + and  $\cdot$  on F as follows:-

- a/b + c/d = ad + bc/bd
- a/b + c/d = ac/bd

We first need to check that + and . are well defined:-

- If  $a_1/b_1 = a_2/b_2$  and  $c_1/d_1 = c_2/d_2$ , we need to show that  $a_1/b_1 + c_1/d_1 = a_2/b_2 + c_2/d_2$  and  $a_1/b_1$ .  $c_1/d_1 = a_2/b_2$ .  $a_2/b_2$ 

### Excercise

1. Prove the well-definedness + and .

Now, we have to check that (F, +, .) forms a field.

- Additive identity : 0/r, where  $r \in R \setminus \{0\}$ .
- Multiplication identity : r/r,  $\mathbf{r} \in \mathbb{R} \setminus \{0\}$
- Additive inverse of  ${}^r\!/\!{}_s:\, {}^-\!r\!/\!{}_s,\, r\,\in\, R,\, s\,\in\, R\backslash\{0\}$
- Multiplication inverse of r/s: s/r, r, s  $\in \mathbb{R} \setminus \{0\}$ .

#### Excercise

1. Prove that (F, +, .) forms a field.

So, we have constructed a field F using the integral domain R. Now, we need to show that R sits inside F, that is, we have to find an injective homomorphism  $h: R \to F$ .

Define  $h: R \to F, r \mapsto r/1$ .

- <u>h is injective</u>:- Take any a,  $b \in \mathbb{R}$ . Now, h(a) = h(b) implies that a/1 = b/1 implies that a. 1 = b.1 that is a = b.
- h is homomorphism:- Take any  $a, b \in \mathbb{R}$ . Now,

$$h(a + b) = a + b/1 h(a.b) = ab/1 = a/1 + b/1 = a/1.b/1 = h(a) + h(b) = h(a).h(b)$$

Thus, h is an injective homomorphism. This completes the proof. F is called a quotient field of R.

# 1 Quotient Ring:-

Let R be an integral domain. Then the quotient field  $Q_R$ , say, is the smallest field containing R in the sense that if F is any field such that there is an injective homomorphism  $f: R \to F$ . then there is an injective homomorphism.

 $f^*: Q_R \to F$ . How do we get this  $f^*$ ? Consider, the given diagram below:-



Given f, and the map h given above, which we denote here by i, we need to find  $f^*: Q_R \to F$  by:

$$f^*(a/b = f(a)[f(b)]^{-1}$$

- Since,  $b \neq 0$ ,  $f(b) \neq 0$ , as f is injective. So,  $[f(b)]^{-1}$  exists.
- Let us first check whether  $f^*$  is well defined:

Suppose a/b = c/d. To show that  $f^*(a/b) = f^*(c/d)$ . Now, we have ad = bc. So,

$$f(ad) = f(bc)$$
  

$$\implies f(a)f(b) = f(b)f(c)$$
  

$$\implies f(a)[f(b)]^{-1} = f(c)[f(d)]^{-1}$$

Thus,  $f^*$  is well defined.

## Excercise

1. Prove that  $f^*$  is an injective homomorphism.

Now, we need to show that

$$f^* \circ i = f$$

. To show that take any  $r \in \mathbb{R}$ , therefore,

$$(f^* \circ i)(r) = f^*(i(r)) = f^*(r/1) = f(r)(f(1))^{-1} = f(r)$$
Since, f(1) = 1<sub>F</sub>

Thus we have that  $Q_R$ , the quotient field of R is the smallest containing R.

## Excercise

1. Let R be a commutative ring with identity and F be a field. Let  $f : R \to F$  be an injective homomorphism. Then prove or disprove the following statement:-

 $f(1_R) = 1_F$