07.03.2024

Lecture 15: More on Quotient Rings

Lecturer: Sujata Ghosh

Scribe: Ritam M Mitra

1 Correspondence Theorem for Rings

Correspondence Theorem for Rings Let I be an ideal of a ring R. There is a bijection Ψ from the set of subrings of R containing I and the set of subrings of R/I. The bijection preserves inclusion $(S_1 \subseteq S_2 \Rightarrow S_1 \Psi \subseteq S_2 \Psi)$, and ideals of R containing I correspond to ideals of R/I.

Proof Define $S\Psi = \{I + s : s \in S\} = S/I$, for subrings S of R containing I. Let $\tilde{\theta}$ be the canonical homomorphism for I. Given S, let $\tilde{\theta}$ be the restriction of θ to S. Then $\tilde{\theta}$ is a homomorphism, and $Im(\tilde{\theta}) = s\theta : s \in S = I + s : s \in S = S\Psi$. But $Im(\tilde{\theta})$ is a subring of R/I, so $S\Psi$ is a subring of R/I.

Given $S\Psi$, we can recover S as the union of the cosets of I which are elements of $S\Psi$, so Ψ is one-to-one. Clearly, Ψ preserves inclusion.

Let T be a subring of R/I. Put $\tilde{T} = \{r \in R : I + r \in T\}$. We know from the group theory that $(\tilde{T}, +)$ is a subring of (R, +) containing I. If r_1, r_2 are in \tilde{T} then $I + r_1 \in T$ and $I + r_2 \in T$, so $(I + r_1)(I + r_2) \in T$, so $I + r_1r_2 \in T$, so $r_1r_2 \in \tilde{T}$. Hence \tilde{T} is a subring of R. Clearly, $\tilde{T}\Psi = T$. Therefore Ψ is onto.

$$S\Psi \triangle R/I \iff (I+s)(I+r) \in S\Psi \text{ for all s in S and all r in R}$$

and $(I+r)(I+s) \in S\Psi$ for all s in S and all r in R
 $\iff I+sr \in S\Psi$ and $I+rs \in S\Psi$ for all s in S and all r in R
 $\iff sr \in S$ and $rs \in S$ for all s in S and all r in R
 $\iff S \triangle R.$ (1)