Lecture 16: More on Quotient Rings

Lecturer: Sujata Ghosh
Scribe: Ritam M Mitra

1 Correspondence Theorem for Rings

Correspondence Theorem for Rings Let I be an ideal of a ring R. There is a bijection Ψ from the set of subrings of R containing I and the set of subrings of R / I. The bijection preserves inclusion ($S_{1} \subseteq S_{2} \Rightarrow S_{1} \Psi \subseteq S_{2} \Psi$), and ideals of R containing I correspond to ideals of R / I.
Proof Define $S \Psi=\{I+s: s \in S\}=S / I$, for subrings S of R containing I. Let $\tilde{\theta}$ be the canonical homomorphism for I. Given S, let $\tilde{\theta}$ be the restriction of θ to S. Then $\tilde{\theta}$ is a homomorphism, and $\operatorname{Im}(\tilde{\theta})=s \theta: s \in S=I+s: s \in S=S \Psi$. But $\operatorname{Im}(\tilde{\theta})$ is a subring of R / I, so $S \Psi$ is a subring of R / I.

Given $S \Psi$, we can recover S as the union of the cosets of I which are elements of $S \Psi$, so Ψ is one-to-one. Clearly, Ψ preserves inclusion.

Let T be a subring of R / I. Put $\tilde{T}=\{r \in R: I+r \in T\}$. We know from the group theory that $(\tilde{T},+)$ is a subring of $(R,+)$ containing I. If r_{1}, r_{2} are in \tilde{T} then $I+r_{1} \in T$ and $I+r_{2} \in T$, so $\left(I+r_{1}\right)\left(I+r_{2}\right) \in T$, so $I+r_{1} r_{2} \in T$, so $r_{1} r_{2} \in \tilde{T}$. Hence \tilde{T} is a subring of R. Clearly, $\tilde{T} \Psi=T$. Therefore Ψ is onto.

$S \Psi \triangle R / I \Longleftrightarrow(I+s)(I+r) \in S \Psi$ for all s in S and all r in R and $(I+r)(I+s) \in S \Psi$ for all s in S and all r in R $\Longleftrightarrow I+s r \in S \Psi$ and $I+r s \in S \Psi$ for all s in S and all r in R $\Longleftrightarrow s r \in S$ and $r s \in S$ for all s in S and all r in R $\Longleftrightarrow S \triangle R$.

