January 19 2024

Lecture 4: More on Countable Sets

Lecture: Sujata Ghosh Scribe: Basudeb Roy, Shramana Dey

1 Topics for this lecture

In this lecture, we shall talk about the following

- 1. Operations on the countable set.
- 2. Notations.
- 3. Definitions.
- 4. Schröder-Bernstein Theorem.

2 Operations on countable set

2.1 Union on countable sets

Theorem 2.1 Union of finitely many countable sets is countable.

Proof. Base Case (Two Countable Sets): Let A and B be two countable sets. This means there exist bijections $f : \mathbb{N} \to A$ and $g : \mathbb{N} \to B$.

Consider the union $A \cup B$. Define a function $h : \mathbb{N} \to A \cup B$ as follows:

$$h(x) = \begin{cases} f\left(\frac{x}{2}\right) & \text{if } x \text{ is even} \\ g\left(\frac{x+1}{2}\right) & \text{if } x \text{ is odd} \end{cases}$$

This function h is a bijection from \mathbb{N} to $A \cup B$. Therefore, the union of two countable sets is countable.

Inductive Step (Finitely Many Countable Sets): Assume that the union of n countable sets is countable for some positive integer n. That is, if A_1, A_2, \ldots, A_n are countable sets, then $A_1 \cup A_2 \cup \ldots \cup A_n$ is countable.

Now, consider n + 1 countable sets: $A_1, A_2, \ldots, A_n, A_{n+1}$. By the inductive assumption, the union $A_1 \cup A_2 \cup \ldots \cup A_n$ is countable.

Applying the base case result to this countable set and A_{n+1} , we can conclude that $(A_1 \cup A_2 \cup \ldots \cup A_n) \cup A_{n+1}$ is countable.

By mathematical induction, we have shown that the union of finitely many countable sets is countable.

Theorem 2.2 Union of countably many countable sets is also countable.

Proof. Let $\{A_n : n \in \mathbb{N}\}$ be a countable collection of countable sets. Let $A = \bigcup_{n \in \mathbb{N}} A_n$. To show that A is countable, let A_n 's be pairwise disjoint. Now, we have that each A_n can be written as: $\{a_{n1}, a_{n2}, a_{n3}, \cdots\}$, that is

 $A_n = \{a_{nk}\}_{\mathbb{R} \in \mathbb{N}}$. then we have the following arrangement for the members of A:

a_{11}	a_{12}	a_{13}	• • •
a_{21}	a_{22}	a_{23}	• • •
a_{31}	a_{32}	a_{33}	• • •
• • •	• • •	• • •	• • •

Now, we traverse the grid diagonally, listing each element:

 $a_{11}, a_{21}, a_{12}, a_{31}, a_{22}, a_{13}, \cdots$

. This enumeration gives a bijection between \mathbb{N} and \mathcal{A} . So \mathcal{A} is countable.

2.2 Product of countable sets

Theorem 2.3 Let A and B be two countable sets, then $A \times B$ is countable.

Proof. Let A = $\{a_1, a_2, \dots\}$ and B = $\{b_1, b_2, \dots\}$, then we can list all the rational numbers in a grid as follows:-

(a_1, b_1)	(a_1, b_2)	(a_1, b_3)	• • •
(a_2, b_1)	(a_2, b_2)	(a_2, b_3)	• • •
(a_3, b_1)	(a_3, b_2)	(a_3,b_3)	• • •

Now, we traverse the grid diagonally, listing each element:

 $(a_1, b_1), (a_2, b_1), (a_1, b_2), (a_3, b_1), (a_2, b_2), (a_1, b_3), \dots$

this enumeration gives a bijection between **N** and $(A \times B)$. So, $(A \times B)$ is countable. \Box

Theorem 2.4 Let $A_1, A_2, A_3, \dots, A_n$ be *n* countable sets, where $n \ge 1$, then $A_1 \times A_2 \times A_3 \times \dots \times A_n$ is also countable.

Proof. The proof will be done by using induction on n.

Base Case:- when n = 2, using the theorem 2.3 we can prove that $A_1 \times A_2$ is also countable.

Inductive Hypothesis:- Let us assume that this theorem is true for any n-1 countable sets, i.e., $A_1, A_2, A_3, \dots, A_{n-1}$ be n countable sets, where $n \ge 1$, then $A_1 \times A_2 \times A_3 \times \dots \times A_{n-1}$ is also countable.

Induction Step:- Let $A_1 = \{a_{11}, a_{12}, \dots\}$, $A_2 = \{a_{21}, a_{22}, \dots\}$, \dots , $A_n = \{a_{n1}, a_{n2}, \dots\}$ then we can list all the rational numbers in a n-dimensional grid. By applying the diagonalization argument we can say that there is a bijection between \mathbb{N} and $A_1 \times A_2 \times \dots \times A_n$. So, $A_1 \times A_2 \times \dots \times A_n$ is countable. \Box Let A_1, A_2, A_3, \cdots be a countable collection of countable sets. then the natural question comes into that what can we say about $\prod_{n \in \mathbb{N}} A_n$ i.e., the countable product of countable sets?

Let us take an example. Consider the set $A = \{0, 1\}$ and also let $B = \prod_{n \in \mathbb{N}} A_n$ where $A_n = A$ for all n.

Lemma 2.5 B is not a countable set.

Proof. We will prove it by contradiction. Suppose B is countable. Then $B = \{b_1, b_2, b_3, \dots\}$. Now, each b_i is a sequence of 0's and 1's then $b_i = (b_{i1}, b_{i2}, b_{i3}, \dots)$, where $b_{ij} \in \{0, 1\}$ for all $j \in \mathbf{N}$.

Let c be a sequence of 0's and 1's defined as follows:-

$$c = \begin{cases} 0, & b_{ii} = 1\\ 1, & b_{ii} = 0, i \in \mathbf{N} \end{cases}$$

Then, $c \neq b_i$ for any $i \in \mathbb{N}$. Thus, $c \notin B$ is a contradiction. Hence, our assumption that B is countable cannot be true. Hence, B is uncountable.

Diagonalization argument

A set S is called **COUNTABLY INFINITE** if there is a bijection between S and \mathbb{N} . That is, you can label the elements of S 1, 2, . . . so that each positive integer is used exactly once as a label. In the year 1895, **Georg Cantor** proved this fact by showing that the set of real numbers is not countable, which is famously known as **"Diagonalization argument"**. In the lemma 2.5 we use this argument.

Time for a little exercise

Exercise Prove that **R** is uncountable.

Before proceeding let us fix some notations.

Notations:-

- 1. When we have $\prod_{n \in \mathbb{N}} A_n$, where $A_n = A$ for all n, we denote $\prod_{n \in \mathbb{N}} A_n$ by $A^{\mathbb{N}}$.
- 2. X^Y denotes the set of all functions from Y to X.
- 3. Any tuple over A, which is countable in size can be represented by a function f: $\mathbb{N} \to A$.
- 4. Above mention is also held for any indexing set I. If we consider the collection $\{A_i : i \in I\}, A_i = A$ for all $i \in I, \prod_{i \in I} A_i$ is also given by A^I .
 - Example:- A = {0, 1} and indexing set I = \mathbb{N} , then $\prod_{n \in \mathbb{N}} A_n$, $A_i = A$ for all $i \in \mathbb{I}$ is also given by $2^{\mathbb{N}}$ which is an uncountable.

Exercise Prove that there is a bijection between $2^{\mathbb{N}}$ and \mathbb{R} is uncountable.

3 Definition:-

- 1. Cardinality:- Let A be any set. We denote cardinality of A by |A|. For example:-
 - (a) $|\mathbb{N}|$ denote the cardinality of \mathbb{N} .
 - (b) \mathbb{R} denote the cardinality of \mathbb{R} .
 - (c) Let $|\mathbb{N}| = \aleph_0$ and $|\mathbb{R}| = c$, then we have $2^{\aleph_0} = c$
- 2. If there is an injection from set A to set B, then we denote it by: $|A| \ge |B|$.
- 3. < denotes the strict order.

Proposition 3.1 Schröder-Bernstein Theorem: If there exist injective functions $f: A \to B$ and $g: B \to A$, then there exists a bijective function $h: A \to B$.

Proof. Injection from A to B: $f : A \to B$ is injective, meaning that for any distinct elements $x_1, x_2 \in A, f(x_1) \neq f(x_2)$.

Injection from B to A: $g: B \to A$ is injective, meaning that for any distinct elements $y_1, y_2 \in B, g(y_1) \neq g(y_2)$.

Construction of Bijection: Consider the composition $g \circ f : A \to A$ and $f \circ g : B \to B$. Since these compositions are injective, they are also surjective because they have the same cardinality as the domain and codomain.

Bijections and the Inverse: Because $g \circ f : A \to A$ is surjective, it has an inverse $h : A \to B$ such that $h \circ (g \circ f) = \mathrm{Id}_A$, where Id_A is the identity function on A. Similarly, because $f \circ g : B \to B$ is surjective, it has an inverse $k : B \to A$ such that $k \circ (f \circ g) = \mathrm{Id}_B$.

Establishing the Bijection: Define $h : A \to B$ by $h = g \circ f$. Then h is a bijection because:

- Injectivity: h is injective because g and f are injective, and the composition of injective functions is injective.
- Surjectivity: h is surjective because g and f are surjective, and the composition of surjective functions is surjective.

This completes the proof.