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Lecture 4: More on Countable Sets

Lecture: Sujata Ghosh Scribe: Basudeb Roy, Shramana Dey

1 Topics for this lecture
In this lecture, we shall talk about the following
1. Operations on the countable set.

2. Notations.

3. Definitions.

W

. Schroder-Bernstein Theorem.

2 Operations on countable set

2.1 Union on countable sets

Theorem 2.1 Union of finitely many countable sets is countable.

Proof. Base Case (Two Countable Sets): Let A and B be two countable sets. This
means there exist bijections f: N — A and g : N — B.
Consider the union A U B. Define a function h: N — AU B as follows:

(%) if z is even

it
h(x)_{g(wgl) if 2 is odd

This function h is a bijection from N to A U B. Therefore, the union of two countable sets
is countable.
Inductive Step (Finitely Many Countable Sets): Assume that the union of n

countable sets is countable for some positive integer n. That is, if A1, Ao,..., A, are
countable sets, then A1 U As U...U A, is countable.
Now, consider n + 1 countable sets: Ai, Ao, ..., Ay, Apy1. By the inductive assumption,

the union A; U Ao U...U A, is countable.
Applying the base case result to this countable set and A, 1, we can conclude that
(AU A2 U...UA,) U A4 is countable.
By mathematical induction, we have shown that the union of finitely many countable sets
is countable.
O

Theorem 2.2 Union of countably many countable sets is also countable.
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Proof. Let {A, : n € N} be a countable collection of countable sets. Let A = UpenA,,. To
show that A is countable, let A,’s be pairwise disjoint.

Now, we have that each A,, can be written as: {an1, an2, ans, - - - }, that is

A, = {ank }ren. then we have the following arrangement for the members of A:

ailp a2 a3
a1 a2 az3
aszy asz2 ag3

Now, we traverse the grid diagonally, listing each element:

aii, az1, @12)a31, a2, a13, - - -

. This enumeration gives a bijection between N and A. So A is countable. O

2.2 Product of countable sets

Theorem 2.3 Let A and B be two countable sets, then A x B is countable.

Proof. Let A ={ai1,as,---} and B = {by,bs,- -}, then we can list all the rational numbers
in a grid as follows:-

(a1,01) (a1,b2) (a1,b3)

(a2,b1) (a2,b2) (a2,b3)

(a3, b1) (a3, b2) (a3, b3)

Now, we traverse the grid diagonally, listing each element:

(a1,b1), (az,b1), (a1, b2), (a3, b1), (az, b2), (a1, b3), ...

this enumeration gives a bijection between N and (A x B). So, (A x B) is countable. O

Theorem 2.4 Let Ay, Ag, Ag, -+, A, be n countable sets, where n > 1, then A; X
Ag x A3 x --- X A, is also countable.

Proof. The proof will be done by using induction on n.

Base Case:- when n = 2, using the theorem [2.3] we can prove that A; x As is also
countable.

Inductive Hypothesis:- Let us assume that this theorem is true for any n-1
countable sets, i.e., A1, As, A3, -, A,_1 be n countable sets, where n > 1, then
A x Ag x A3 x --- x A,,_1 1s also countable.

Induction Step:- Let 41 = {ai1,a12,- -}, A2 = {a2,a2, -}, -+, Ay =
{ani,an2, -} then we can list all the rational numbers in a n-dimensional grid.
By applying the diagonalization argument we can say that there is a bijection be-
tween N and A7 X Ay X --- X A,. So, A1 X Ay X --- x A, is countable. O




Let A1, As, A3, - -+ be a countable collection of countable sets. then the natural
question comes into that what can we say about [, n A i.e., the countable product of
countable sets?

Let us take an example. Consider the set A = {0, 1}and also let B = [[,,cn An Where
A, = A for all n.

Lemma 2.5 B is not a countable set.

Proof. We will prove it by contradiction. Suppose B is countable. Then
B = {b1,by,b3,---}. Now, each b; is a sequence of 0’s and 1’s then b; = (b;1, bi2, biz, - -+ ),
where b;; € {0,1} for all j € N.

Let ¢ be a sequence of 0’s and 1’s defined as follows:-

0, b;=1
CcC =
1, b;=0,7¢N

Then, ¢ # b; for any ¢ € N. Thus, ¢ ¢ B is a contradiction. Hence, our assumption that B
is countable cannot be true. Hence, B is uncountable. O

Diagonalization argument

A set S is called COUNTABLY INFINITE if there is a bijection between S and
N. That is, you can label the elements of S 1, 2, . . . so that each positive integer is
used exactly once as a label. In the year 1895, Georg Cantor proved this fact by
showing that the set of real numbers is not countable, which is famously known as
”Diagonalization argument”. In the lemma [2.5| we use this argument.

Time for a little exercise

Exercise Prove that R is uncountable.

Before proceeding let us fix some notations.

1. When we have ], oy An, where A, = A for all n, we denote [],,cy 4n by AN.

2. XY denotes the set of all functions from Y to X.

3. Any tuple over A, which is countable in size can be represented by a function
f: N— A.

4. Above mention is also held for any indexing set I. If we consider the collection
{A; i€}, A;=Aforalli€ I, [[;c; A is also given by AL,

e Example:- A = {0, 1} and indexing set I = N, then []
all i € I is also given by 2N which is an uncountable.

neN An, Ai = A for
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Exercise Prove that there is a bijection between 2% and R is uncountable.

Definition:-

1. Cardinality:- Let A be any set. We denote cardinality of A by |A|. For example:-

(a) |N| denote the cardinality of N.
(b) R denote the cardinality of R.
(c) Let |[N] = Rg and |R| = ¢, then we have 2% = ¢

2. If there is an injection from set A to set B, then we denote it by:|A| > |B].

3. < denotes the strict order.

Proposition 3.1 Schréoder-Bernstein Theorem: If there exist injective func-
tions f: A — B and g : B — A, then there exists a bijective function h: A — B.

Proof. Injection from A to B: f: A — B is injective, meaning that for any distinct
elements z1,x2 € A, f(x1) # f(x2).

Injection from B to A: g : B — A is injective, meaning that for any distinct elements
Yy1,y2 € B, g(y1) # 9(y2)-

Construction of Bijection: Consider the composition gof : A — A and fog: B — B.
Since these compositions are injective, they are also surjective because they have the
same cardinality as the domain and codomain.

Bijections and the Inverse: Because go f : A — A is surjective, it has an inverse
h : A — B such that ho (go f) = Id4, where Id4 is the identity function on A.
Similarly, because f o g: B — B is surjective, it has an inverse k : B — A such that
ko(fog)=Idp.

Establishing the Bijection: Define h : A — B by h = go f. Then h is a bijection
because:

o Injectivity: h is injective because g and f are injective, and the composition of
injective functions is injective.

e Surjectivity: h is surjective because g and f are surjective, and the composition
of surjective functions is surjective.

This completes the proof. O
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