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1 Topics for this lecture

In this lecture, we shall talk about the following

1. Operations on the countable set.

2. Notations.

3. Definitions.

4. Schröder-Bernstein Theorem.

2 Operations on countable set

2.1 Union on countable sets

Theorem 2.1 Union of finitely many countable sets is countable.

Proof. Base Case (Two Countable Sets): Let A and B be two countable sets. This
means there exist bijections f : N → A and g : N → B.
Consider the union A ∪B. Define a function h : N → A ∪B as follows:

h(x) =

{
f
(
x
2

)
if x is even

g
(
x+1
2

)
if x is odd

This function h is a bijection from N to A ∪B. Therefore, the union of two countable sets
is countable.
Inductive Step (Finitely Many Countable Sets): Assume that the union of n
countable sets is countable for some positive integer n. That is, if A1, A2, . . . , An are
countable sets, then A1 ∪A2 ∪ . . . ∪An is countable.
Now, consider n+ 1 countable sets: A1, A2, . . . , An, An+1. By the inductive assumption,
the union A1 ∪A2 ∪ . . . ∪An is countable.
Applying the base case result to this countable set and An+1, we can conclude that
(A1 ∪A2 ∪ . . . ∪An) ∪An+1 is countable.
By mathematical induction, we have shown that the union of finitely many countable sets
is countable.

2

Theorem 2.2 Union of countably many countable sets is also countable.
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Proof. Let {An : n ∈ N} be a countable collection of countable sets. Let A = ∪n∈NAn. To
show that A is countable, let An’s be pairwise disjoint.
Now, we have that each An can be written as: {an1, an2, an3, · · · }, that is
An = {ank}R∈N. then we have the following arrangement for the members of A:

a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
· · · · · · · · · · · ·

Now, we traverse the grid diagonally, listing each element:

a11, a21, a12)a31, a22, a13, · · ·

. This enumeration gives a bijection between N and A. So A is countable. 2

2.2 Product of countable sets

Theorem 2.3 Let A and B be two countable sets, then A×B is countable.

Proof. Let A ={a1, a2, · · · } and B = {b1, b2, · · · }, then we can list all the rational numbers
in a grid as follows:-

(a1, b1) (a1, b2) (a1, b3) · · ·
(a2, b1) (a2, b2) (a2, b3) · · ·
(a3, b1) (a3, b2) (a3, b3) · · ·
· · · · · · · · · · · ·

Now, we traverse the grid diagonally, listing each element:

(a1, b1), (a2, b1), (a1, b2), (a3, b1), (a2, b2), (a1, b3), . . .

this enumeration gives a bijection between N and (A×B). So, (A×B) is countable. 2

Theorem 2.4 Let A1, A2, A3, · · · , An be n countable sets, where n ≥ 1, then A1 ×
A2 ×A3 × · · · ×An is also countable.

Proof. The proof will be done by using induction on n.
Base Case:- when n = 2, using the theorem 2.3 we can prove that A1 × A2 is also
countable.
Inductive Hypothesis:- Let us assume that this theorem is true for any n-1
countable sets, i.e., A1, A2, A3, · · · , An−1 be n countable sets, where n ≥ 1, then
A1 ×A2 ×A3 × · · · ×An−1 is also countable.
Induction Step:- Let A1 = {a11, a12, · · · }, A2 = {a21, a22, · · · }, · · · , An =
{an1, an2, · · · } then we can list all the rational numbers in a n-dimensional grid.
By applying the diagonalization argument we can say that there is a bijection be-
tween N and A1 ×A2 × · · · ×An. So, A1 ×A2 × · · · ×An is countable. 2

4-2



Let A1, A2, A3, · · · be a countable collection of countable sets. then the natural
question comes into that what can we say about

∏
n∈NAn i.e., the countable product of

countable sets?
Let us take an example. Consider the set A = {0, 1}and also let B =

∏
n∈NAn where

An = A for all n.

Lemma 2.5 B is not a countable set.

Proof. We will prove it by contradiction. Suppose B is countable. Then
B = {b1, b2, b3, · · · }. Now, each bi is a sequence of 0’s and 1’s then bi = (bi1, bi2, bi3, · · · ),
where bij ∈ {0, 1} for all j ∈ N.

Let c be a sequence of 0’s and 1’s defined as follows:-

c =

{
0, bii = 1

1, bii = 0, i ∈ N

Then, c ̸= bi for any i ∈ N. Thus, c /∈ B is a contradiction. Hence, our assumption that B
is countable cannot be true. Hence, B is uncountable. 2

Diagonalization argument

A set S is called COUNTABLY INFINITE if there is a bijection between S and
N. That is, you can label the elements of S 1, 2, . . . so that each positive integer is
used exactly once as a label. In the year 1895, Georg Cantor proved this fact by
showing that the set of real numbers is not countable, which is famously known as
”Diagonalization argument”. In the lemma 2.5 we use this argument.

Time for a little exercise

Exercise Prove that R is uncountable.

Before proceeding let us fix some notations.

Notations:-

1. When we have
∏

n∈NAn, where An = A for all n, we denote
∏

n∈NAn by AN.

2. XY denotes the set of all functions from Y to X.

3. Any tuple over A, which is countable in size can be represented by a function
f: N → A.

4. Above mention is also held for any indexing set I. If we consider the collection
{Ai : i ∈ I}, Ai = A for all i ∈ I,

∏
i∈I Ai is also given by AI .

• Example:- A = {0, 1} and indexing set I = N, then
∏

n∈NAn, Ai = A for
all i ∈ I is also given by 2N which is an uncountable.
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Exercise Prove that there is a bijection between 2N and R is uncountable.

3 Definition:-

1. Cardinality:- Let A be any set. We denote cardinality of A by |A|. For example:-

(a) |N| denote the cardinality of N.
(b) R denote the cardinality of R.
(c) Let |N| = ℵ0 and |R| = c, then we have 2ℵ0 = c

2. If there is an injection from set A to set B, then we denote it by:|A| ≥ |B|.

3. < denotes the strict order.

Proposition 3.1 Schröder-Bernstein Theorem: If there exist injective func-
tions f : A → B and g : B → A, then there exists a bijective function h : A → B.

Proof. Injection from A to B: f : A → B is injective, meaning that for any distinct
elements x1, x2 ∈ A, f(x1) ̸= f(x2).
Injection from B to A: g : B → A is injective, meaning that for any distinct elements
y1, y2 ∈ B, g(y1) ̸= g(y2).
Construction of Bijection: Consider the composition g◦f : A → A and f ◦g : B → B.
Since these compositions are injective, they are also surjective because they have the
same cardinality as the domain and codomain.
Bijections and the Inverse: Because g ◦ f : A → A is surjective, it has an inverse
h : A → B such that h ◦ (g ◦ f) = IdA, where IdA is the identity function on A.
Similarly, because f ◦ g : B → B is surjective, it has an inverse k : B → A such that
k ◦ (f ◦ g) = IdB.
Establishing the Bijection: Define h : A → B by h = g ◦ f . Then h is a bijection
because:

• Injectivity: h is injective because g and f are injective, and the composition of
injective functions is injective.

• Surjectivity: h is surjective because g and f are surjective, and the composition
of surjective functions is surjective.

This completes the proof. 2

4-4


	Topics for this lecture
	Operations on countable set
	Union on countable sets
	Product of countable sets

	Definition:-

