Elements of Algebraic Structures
January 192024
Lecture 4: More on Countable Sets
Lecture: Sujata Ghosh
Scribe: Basudeb Roy, Shramana Dey

1 Topics for this lecture

In this lecture, we shall talk about the following

1. Operations on the countable set.
2. Notations.
3. Definitions.
4. Schröder-Bernstein Theorem.

2 Operations on countable set

2.1 Union on countable sets

Theorem 2.1 Union of finitely many countable sets is countable.
Proof. Base Case (Two Countable Sets): Let A and B be two countable sets. This means there exist bijections $f: \mathbb{N} \rightarrow A$ and $g: \mathbb{N} \rightarrow B$.
Consider the union $A \cup B$. Define a function $h: \mathbb{N} \rightarrow A \cup B$ as follows:

$$
h(x)= \begin{cases}f\left(\frac{x}{2}\right) & \text { if } x \text { is even } \\ g\left(\frac{x+1}{2}\right) & \text { if } x \text { is odd }\end{cases}
$$

This function h is a bijection from \mathbb{N} to $A \cup B$. Therefore, the union of two countable sets is countable.
Inductive Step (Finitely Many Countable Sets): Assume that the union of n countable sets is countable for some positive integer n. That is, if $A_{1}, A_{2}, \ldots, A_{n}$ are countable sets, then $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is countable.
Now, consider $n+1$ countable sets: $A_{1}, A_{2}, \ldots, A_{n}, A_{n+1}$. By the inductive assumption, the union $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is countable.
Applying the base case result to this countable set and A_{n+1}, we can conclude that $\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right) \cup A_{n+1}$ is countable.
By mathematical induction, we have shown that the union of finitely many countable sets is countable.

Theorem 2.2 Union of countably many countable sets is also countable.

Proof. Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a countable collection of countable sets. Let $\mathrm{A}=\cup_{n \in \mathbb{N}} A_{n}$. To show that A is countable, let A_{n} 's be pairwise disjoint.
Now, we have that each A_{n} can be written as: $\left\{a_{n 1}, a_{n 2}, a_{n 3}, \cdots\right\}$, that is $A_{n}=\left\{a_{n k}\right\}_{\mathbb{R} \in \mathbb{N}}$. then we have the following arrangement for the members of A:

$$
\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\ldots & \cdots & \cdots & \cdots
\end{array}
$$

Now, we traverse the grid diagonally, listing each element:

$$
a_{11}, a_{21}, a_{12)} a_{31}, a_{22}, a_{13}, \cdots
$$

. This enumeration gives a bijection between \mathbb{N} and A . So A is countable.

2.2 Product of countable sets

Theorem 2.3 Let A and B be two countable sets, then $A \times B$ is countable.
Proof. Let $\mathrm{A}=\left\{a_{1}, a_{2}, \cdots\right\}$ and $\mathrm{B}=\left\{b_{1}, b_{2}, \cdots\right\}$, then we can list all the rational numbers in a grid as follows:-

$$
\begin{array}{cccc}
\left(a_{1}, b_{1}\right) & \left(a_{1}, b_{2}\right) & \left(a_{1}, b_{3}\right) & \ldots \\
\left(a_{2}, b_{1}\right) & \left(a_{2}, b_{2}\right) & \left(a_{2}, b_{3}\right) & \ldots \\
\left(a_{3}, b_{1}\right) & \left(a_{3}, b_{2}\right) & \left(a_{3}, b_{3}\right) & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}
$$

Now, we traverse the grid diagonally, listing each element:

$$
\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{3}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{1}, b_{3}\right), \ldots
$$

this enumeration gives a bijection between \mathbf{N} and $(A \times B)$. So, $(A \times B)$ is countable.

Theorem 2.4 Let $A_{1}, A_{2}, A_{3}, \cdots, A_{n}$ be n countable sets, where $n \geq 1$, then $A_{1} \times$ $A_{2} \times A_{3} \times \cdots \times A_{n}$ is also countable.

Proof. The proof will be done by using induction on n.
Base Case:- when $\mathrm{n}=2$, using the theorem 2.3 we can prove that $A_{1} \times A_{2}$ is also countable.
Inductive Hypothesis:- Let us assume that this theorem is true for any n-1 countable sets, i.e., $A_{1}, A_{2}, A_{3}, \cdots, A_{n-1}$ be n countable sets, where $n \geq 1$, then $A_{1} \times A_{2} \times A_{3} \times \cdots \times A_{n-1}$ is also countable.
Induction Step:- Let $A_{1}=\left\{a_{11}, a_{12}, \cdots\right\}, A_{2}=\left\{a_{21}, a_{22}, \cdots\right\}, \cdots, A_{n}=$ $\left\{a_{n 1}, a_{n 2}, \cdots\right\}$ then we can list all the rational numbers in a n-dimensional grid. By applying the diagonalization argument we can say that there is a bijection between \mathbb{N} and $A_{1} \times A_{2} \times \cdots \times A_{n}$. So, $A_{1} \times A_{2} \times \cdots \times A_{n}$ is countable.

Let $A_{1}, A_{2}, A_{3}, \cdots$ be a countable collection of countable sets. then the natural question comes into that what can we say about $\prod_{n \in \mathbf{N}} A_{n}$ i.e., the countable product of countable sets?

Let us take an example. Consider the set $\mathrm{A}=\{0,1\}$ and also let $B=\prod_{n \in \mathbf{N}} A_{n}$ where $A_{n}=A$ for all n .

Lemma 2.5 B is not a countable set.
Proof. We will prove it by contradiction. Suppose B is countable. Then $B=\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$. Now, each b_{i} is a sequence of 0 's and 1 's then $b_{i}=\left(b_{i 1}, b_{i 2}, b_{i 3}, \cdots\right)$, where $b_{i j} \in\{0,1\}$ for all $j \in \mathbf{N}$.

Let c be a sequence of 0 's and 1's defined as follows:-

$$
c= \begin{cases}0, & b_{i i}=1 \\ 1, & b_{i i}=0, i \in \mathbf{N}\end{cases}
$$

Then, $c \neq b_{i}$ for any $i \in \mathbf{N}$. Thus, $c \notin B$ is a contradiction. Hence, our assumption that B is countable cannot be true. Hence, B is uncountable.

Diagonalization argument

A set S is called COUNTABLY INFINITE if there is a bijection between S and \mathbb{N}. That is, you can label the elements of $\mathrm{S} 1,2, \ldots$ so that each positive integer is used exactly once as a label. In the year 1895, Georg Cantor proved this fact by showing that the set of real numbers is not countable, which is famously known as "Diagonalization argument". In the lemma 2.5 we use this argument.

Time for a little exercise

Exercise Prove that \mathbf{R} is uncountable.
Before proceeding let us fix some notations.

Notations:-

1. When we have $\prod_{n \in \mathbb{N}} A_{n}$, where $A_{n}=A$ for all n, we denote $\prod_{n \in \mathbb{N}} A_{n}$ by $A^{\mathbb{N}}$.
2. X^{Y} denotes the set of all functions from Y to X .
3. Any tuple over A, which is countable in size can be represented by a function f: $\mathbb{N} \rightarrow A$.
4. Above mention is also held for any indexing set I. If we consider the collection $\left\{A_{i}: \mathrm{i} \in \mathrm{I}\right\}, A_{i}=A$ for all $i \in I, \prod_{i \in I} A_{i}$ is also given by A^{I}.

- Example:- $\mathrm{A}=\{0,1\}$ and indexing set $\mathrm{I}=\mathbb{N}$, then $\prod_{n \in \mathbb{N}} A_{n}, A_{i}=A$ for all $i \in \mathbb{I}$ is also given by $2^{\mathbb{N}}$ which is an uncountable.

Exercise Prove that there is a bijection between $2^{\mathbb{N}}$ and \mathbb{R} is uncountable.

3 Definition:-

1. Cardinality:- Let A be any set. We denote cardinality of A by $|A|$. For example:-
(a) $|\mathbb{N}|$ denote the cardinality of \mathbb{N}.
(b) \mathbb{R} denote the cardinality of \mathbb{R}.
(c) Let $|\mathbb{N}|=\aleph_{0}$ and $|\mathbb{R}|=c$, then we have $2^{\aleph_{0}}=c$
2. If there is an injection from set A to set B , then we denote it by: $|A| \geq|B|$.
3. < denotes the strict order.

Proposition 3.1 Schröder-Bernstein Theorem: If there exist injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there exists a bijective function $h: A \rightarrow B$.

Proof. Injection from A to $B: f: A \rightarrow B$ is injective, meaning that for any distinct elements $x_{1}, x_{2} \in A, f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Injection from B to $A: g: B \rightarrow A$ is injective, meaning that for any distinct elements $y_{1}, y_{2} \in B, g\left(y_{1}\right) \neq g\left(y_{2}\right)$.
Construction of Bijection: Consider the composition $g \circ f: A \rightarrow A$ and $f \circ g: B \rightarrow B$. Since these compositions are injective, they are also surjective because they have the same cardinality as the domain and codomain.
Bijections and the Inverse: Because $g \circ f: A \rightarrow A$ is surjective, it has an inverse $h: A \rightarrow B$ such that $h \circ(g \circ f)=\operatorname{Id}_{A}$, where Id_{A} is the identity function on A. Similarly, because $f \circ g: B \rightarrow B$ is surjective, it has an inverse $k: B \rightarrow A$ such that $k \circ(f \circ g)=\operatorname{Id}_{B}$.
Establishing the Bijection: Define $h: A \rightarrow B$ by $h=g \circ f$. Then h is a bijection because:

- Injectivity: h is injective because g and f are injective, and the composition of injective functions is injective.
- Surjectivity: h is surjective because g and f are surjective, and the composition of surjective functions is surjective.

This completes the proof.

