Elements of Algebraic Structures January 23 2024

Lecture 5: Groups: An introduction

Lecture: Sujata Ghosh Scribe: Sai Srujan P

1 Topics for this lecture
In this lecture, we shall talk about the following

1. Motivation: Matrices example
2. Groups

3. Subgroups

2 Motivation

Definition 2.1 (M, (R)) Set of n x n matrices with real entries

ai;p a2 - Aln
az; a2 - A2n
Anl Ap2 -+ Qpp

where a;; € R.

2.1 Set Operations

Now, let us consider two operations Addition(+) and Multiplication(.).

Before proceeding further, let us define certain properties.

Closure Property

A set A is closed under the operation x*, if for all a,b € A, the result of a * b is also in A.

Va,be A, axbe A

Associative Property

The operation * is associative on A if

Va,bce A, (axb)xc=ax(bxc)
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Identity Element

There exists an identity element e € A such that, for all a € A:

deec A > axe=exa=a VaeA

Inverse Element

For each element a € A, there exists an inverse element o~ € A i.e.

VacA, Jaled saxal=alxa=e

Commutative Property

The operation * is commutative on A if

Va,be A, axb=bx*a

2.1.1 Addition(+)
Consider(M,(R), +) and see whether each of the above properties hold:

1. Closure

Yes, addition of 2 n X n matrices is an n X n matrix.

2. Associative

Yes, since each a;; € R and R is associative under +.

3. Identity
Yes, since 3 0 € R and set a;; =0V 1, j.

4. Inverse

Yes, since for any given @ 3 —a € R and set a;; = —a;; V 1, 7.
5. Commutative

Yes, sincea+b=b+aVabeR.

2.1.2 Addition(+)
Consider(M,(R), x) and see whether each of the above properties hold:

1. Closure

Yes, multiplication of 2 n X n matrices is an n X n matrix.

2. Associative

Yes, it can be easily verifiable from the definition of A x B



3. Identity
Yes, 3 Identity I,

1 0 - 0
o1 - 0
0 0 1

) 1 ifi=j
1.e. a;; =
" 0 otherwise

4. Inverse
No,F3A '3 AxA ' =A"1xA=1, iff |A|l=0.

5. Commutative

No, if we take n >= 2

11 0 0
For suppose take A = L O] and B = [O 1]

00
Also, BA = {0 O].

Then AB = [O 1} )

10
Here AB # BA, therefore not Commutative.

2.1.3 General Linear Group(GL,(R))

Define
GL,(R) = {A € M,(R) | A is invertible}

Q. Consider A, B € GL,(R)

e Would A+ B € GLy(R)?

No
Explanation

For any A, Consider B = —A
A+ (-A)=0¢ GL, R

e Would AB € GL,(R)?

Yes
Explanation

From the definition of Inverse above
A matrix A € M, (R) is said to be invertible iff

3 B € My(R) such that AB = BA =1,
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Here B is the inverse of A.

Now, (AB)(B~'A7!) = A(BB™1)A™! = AA~1 = I,.

. AB is invertible whenever A, B are invertible, and B~'A~! is the inverse of AB

Consider (GLn(R),-). Let’s check each of the properties defined above:
1. Closure:
Yes (Explanation: Previous paragraph)

2. Associative:

Yes,
Since associativity with respect to -’ holds for any 3 matrices,
it also holds for GL,(R).

3. Identity:

Yes,
We can observe that I, is the identity
since, Al, = I,A = A for any A € GL,(R).

4. Inverse:

Yes,
From the definition of GL,(R), it holds for any A € GL,(R).

5. Commutative:

No,

Since Matrices in general are not commutative with respect to ’-’.
3 Groups
Consider (G, *), where, G # ¢ and *:binary operation on G.
Definition 3.1 (Binary Operation) A binary operation on a set S is

mapping *: S xS — S
> each (a,b) — a b over S

Definition 3.2 (Group) We say that (G, x*) is a Group if the following conditions hold:
1. Associative: ¥V a,b,c € G, (axb)xc=ax(bxc)e G
2. Identity: 3 an element e € G > Vae G, axe=exa=a

3. Inverse: Foreacha € G,3a '€ G > a*xa'=alxa=c¢
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Example The following are a few examples.
1. (Z,+) forms a group
Here Identity: 0, and Given a € Z, —a is it’s Inverse

2. Let S be any non-empty set, and let G = {p: p is a bijection on S}.
Consider (G, o), where o is the composition of two bijections.
Then, (G,o) forms a group.

We generally call it the symmetric group on S and denote it by SGg

Consider SGyy 9y = ({€,7}).

() -6

Composition table for S

From the table above we see that for any a,b € SGy 9y, acb=boa
[Composition table is Symmetric].

. 8G 2y a Commutative Group, denoted as SGz

3. SG{17273} = SG3
The elements of SG3:

\]\

Il

N

LW =
W NN NN

—_ W

~_

\]\

Il

N\
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=N =N W N

w W

~_
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Ezxercise Composition Table for SGs.

~
=
<
~

ole 7 7 7 o o
ele 7 7 7 o o
Tl e 7 o 1T o
717 o e o T 7T

™" o o e 1 7
clo ™ 7 1 o e

olo T o T e T

Composition table for SGg

Is SG3 Commutative? No

Consider 7" and o

/
We can see that Too #£ooT.

2 3\ (1 2 3\ (1 2 3
1 3/\2 3 1) \1 3 2
2 3\ (1 2 3\ (1 2 3
3 1)\2 13/ \3 21

[ Proposition 3.4 SG,(n > 3) is not Commutative

Proof. Consider 7'7/; and o, given by

") (i) 1<i<3,
T (1) =
" 7 otherwise.
(0) o(i) 1<i<3,
o.(1) =
c 7 otherwise.

— 7, 00, # 0port, [From the above example]

Hence SGy,(n > 3) is not Commutative
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4 Subgroups

Definition 4.1 (Subgroup) Given (G,-) and H C G

H is called a subgroup of G if H is itself a group under the operation of G
i.e., If the following properties hold:

1. Closure: For alla,be H, a-be H.

2. Identity Element: 3 an element e € H such that for alla € H,axe=e*xa=a

3. Inverse Element: For each a € H,3 a~' € H such thataxa ' =a 'xa=e

Notation: H< G

Proposition 4.2 (Two-step Subgroup test) Let (G,*) be a group and H C G.
Then H < G if and only if:

1.Vab, axbe H
2. d Identity e € H

3. Forallac H,a ' € H.

Exercise: Prove that

1. eg = eq

2. hy = hg!, for any h € H]
Proof.

1. For any h € H, we have

h-eaq=eqg-h=nh
Also, h-eg =eg-h=h

. eq = ep (As Cancellation Laws hold in G)

2. For any h € H, we have
h-hg' =hg!-h=eq
Also, hy' -h = ey = eg (Part 1)
. ht = hg' (As Cancellation Laws hold in G)
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Example Let’s look at a few Examples

1. Subgroups of SG3

{e},SGs,{e, 7}, {e, 7'}, {e, 7"}, {e,0,0'}

a b
{[0 d] .a,b,dER,ad;ﬁO}

{e},2Z

2. Subgroup of GLa(R)

3. Subgroups of (Z,+)
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Proposition 4.4 Any subgroup of (Z,+) is of the form (mZ,+), for some m € Z.

Proof.
<— [ (mZ,+) < (Z,+) for any m € Z |

1. Consider arbitrary z,y € mZ

x = mk and y = ml for some k,l € Z
= x+y=mk+ml
=m(k+l)emZask+1eZ

. For any z,y € mZ, x + y € mZ.
2. 0=m-0emZ.

3. Consider an arbitrary x € mZ

x = m(p) for some p € Z
—z=-mp=m(—p) EmLas —pEZL
x € ml = —x € mZ [Here z + (—z) = 0]

Thus, (mZ,+) forms a subgroup of (Z,+) [Two-step Subgroup test]
= [ Any (H,+) < (Z,+) is of the form (mZ,+) for some m € Z |

e H = {0}, we are done
e Suppose H # {0}.
Without loss of generality, assume H contains positive integers

Suppose m’ be the least positive integer in H
[Existence of m’ is guaranteed by Well-ordering principle]

We know that m'Z C H [ H < (Z,+)]
Claim: m'Z = H
Proof by Contradiction

Suppose not, i.e. m'Z # H
— JzecH>2¢mZ

Now we have x = m'y + r, where y,r € Z and 0 < r < m/’
Also m'y e m'Z Cc H

= m/ye H and —m'y € H

nx—my=xz+ (—m'y) € H (Asz € H)

So r € H, but we see that r < m’

This contradicts the fact that m’ is the least positive integer in H
~.m'Z=H
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