Elements of Algebraic Structures
 Lecture 5: Groups: An introduction
 Lecture: Sujata Ghosh
 Scribe: Sai Srujan P

1 Topics for this lecture

In this lecture, we shall talk about the following

1. Motivation: Matrices example
2. Groups
3. Subgroups

2 Motivation

Definition $2.1\left(M_{\boldsymbol{n}}(\mathbb{R})\right)$ Set of $n \times n$ matrices with real entries

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

where $a_{i j} \in \mathbb{R}$.

2.1 Set Operations

Now, let us consider two operations Addition(+) and Multiplication(.).
Before proceeding further, let us define certain properties.

Closure Property

A set A is closed under the operation $*$, if for all $a, b \in A$, the result of $a * b$ is also in A.

$$
\forall a, b \in A, \quad a * b \in A
$$

Associative Property

The operation $*$ is associative on A if

$$
\forall a, b, c \in A, \quad(a * b) * c=a *(b * c)
$$

Identity Element

There exists an identity element $e \in A$ such that, for all $a \in A$:

$$
\exists e \in A \quad \ni \quad a * e=e * a=a \quad \forall a \in A
$$

Inverse Element

For each element $a \in A$, there exists an inverse element $a^{-1} \in A$ i.e.

$$
\forall a \in A, \quad \exists a^{-1} \in A \quad \ni a * a^{-1}=a^{-1} * a=e
$$

Commutative Property

The operation $*$ is commutative on A if

$$
\forall a, b \in A, \quad a * b=b * a
$$

2.1.1 Addition(+)

$\operatorname{Consider}\left(M_{n}(\mathbb{R}),+\right)$ and see whether each of the above properties hold:

1. Closure

Yes, addition of $2 n \times n$ matrices is an $n \times n$ matrix.

2. Associative

Yes, since each $a_{i j} \in \mathbb{R}$ and \mathbb{R} is associative under + .
3. Identity

Yes, since $\exists 0 \in \mathbb{R}$ and set $a_{i j}=0 \forall i, j$.

4. Inverse

Yes, since for any given $a \exists-a \in \mathbb{R}$ and set $a_{i j}=-a_{i j} \forall i, j$.

5. Commutative

Yes, since $a+b=b+a \forall a, b \in \mathbb{R}$.

2.1.2 Addition(+)

$\operatorname{Consider}\left(M_{n}(\mathbb{R}), \times\right)$ and see whether each of the above properties hold:

1. Closure

Yes, multiplication of $2 n \times n$ matrices is an $n \times n$ matrix.

2. Associative

Yes, it can be easily verifiable from the definition of $A \times B$

3. Identity

Yes, \exists Identity I_{n}

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

i.e. $a_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}$

4. Inverse

No, $\exists A^{-1} \ni A \times A^{-1}=A^{-1} \times A=I_{n}$ iff $|A|!=0$.

5. Commutative

No, if we take $n>=2$
For suppose take $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
Then $A B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
Also, $B A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
Here $A B \neq B A$, therefore not Commutative.

2.1.3 General Linear $\operatorname{Group}\left(G L_{n}(\mathbb{R})\right)$

Define

$$
G L_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid A \text { is invertible }\right\}
$$

Q. Consider $A, B \in G L_{n}(\mathbb{R})$

- Would $A+B \in G L_{n}(\mathbb{R})$?

No

Explanation

For any A, Consider $B=-A$

$$
A+(-A)=0 \notin G L_{n} \mathbb{R}
$$

- Would $A B \in G L_{n}(\mathbb{R})$?

Yes
Explanation
From the definition of Inverse above
A matrix $A \in M_{n}(\mathbb{R})$ is said to be invertible iff

$$
\exists B \in M_{n}(\mathbb{R}) \text { such that } A B=B A=I_{n}
$$

Here B is the inverse of A.

Now, $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I_{n}$.
$\therefore A B$ is invertible whenever A, B are invertible, and $B^{-1} A^{-1}$ is the inverse of $A B$

Consider $\left(\mathbf{G L}_{\mathbf{n}}(\mathbf{R}), \cdot\right)$. Let's check each of the properties defined above:

1. Closure:

Yes (Explanation: Previous paragraph)

2. Associative:

Yes,
Since associativity with respect to ' $'$ ' holds for any 3 matrices, it also holds for $G L_{n}(\mathbb{R})$.

3. Identity:

Yes,
We can observe that I_{n} is the identity
since, $A I_{n}=I_{n} A=A$ for any $A \in G L_{n}(\mathbb{R})$.
4. Inverse:

Yes,
From the definition of $G L_{n}(\mathbb{R})$, it holds for any $A \in G L_{n}(\mathbb{R})$.
5. Commutative:

No,
Since Matrices in general are not commutative with respect to ' $'$ '.

3 Groups

Consider $(\mathbf{G}, *)$, where, $G \neq \phi$ and ${ }^{*}$:binary operation on G.
Definition 3.1 (Binary Operation) A binary operation on a set S is

$$
\begin{aligned}
& \text { mapping } *: S \times S \rightarrow S \\
& \ni \text { each }(a, b) \rightarrow a * b \text { over } S
\end{aligned}
$$

Definition 3.2 (Group) We say that $(\mathbf{G}, *)$ is a Group if the following conditions hold:

1. Associative: $\forall a, b, c \in G,(a * b) * c=a *(b * c) \in G$
2. Identity: \exists an element $e \in G \quad \ni \quad \forall a \in G, a * e=e * a=a$
3. Inverse: For each $a \in G, \exists a^{-1} \in G \quad \ni \quad a * a^{-1}=a^{-1} * a=e$

Example The following are a few examples.

1. $(\mathbf{Z},+)$ forms a group

Here Identity: 0 , and Given $a \in \mathbf{Z},-a$ is it's Inverse
2. Let S be any non-empty set, and let $G=\{\rho: \rho$ is a bijection on $S\}$. Consider (G, \circ), where \circ is the composition of two bijections. Then, (G, \circ) forms a group.

We generally call it the symmetric group on S and denote it by $\mathbf{S G}_{\mathbf{3}}$
Consider $S G_{\{1,2\}}=(\{e, \tau\})$.

$$
e=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \quad \tau=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

\circ	e	τ
e	e	τ
τ	τ	e

Composition table for S

From the table above we see that for any $a, b \in S G_{\{1,2\}}, a \circ b=b \circ a$ [Composition table is Symmetric].

$$
\therefore S G_{\{1,2\}} \text { a Commutative Group, denoted as } \mathbf{S G}_{\mathbf{2}}
$$

3. $S G_{\{1,2,3\}}=\mathbf{S G}_{\mathbf{3}}$.

The elements of $S G_{3}$:

$$
\begin{aligned}
e & =\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & \tau & =\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
\tau^{\prime} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) & \tau^{\prime \prime} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \\
\sigma & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) & \sigma^{\prime} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Exercise Composition Table for $S G_{3}$.

\circ	e	τ	τ^{\prime}	$\tau^{\prime \prime}$	σ	σ^{\prime}
e	e	τ	τ^{\prime}	$\tau^{\prime \prime}$	σ	σ^{\prime}
τ	τ	e	$\tau^{\prime \prime}$	σ^{\prime}	τ^{\prime}	σ
τ^{\prime}	τ^{\prime}	σ^{\prime}	e	σ	$\tau^{\prime \prime}$	τ
$\tau^{\prime \prime}$	$\tau^{\prime \prime}$	σ	σ^{\prime}	e	τ	τ^{\prime}
σ	σ	$\tau^{\prime \prime}$	τ	τ^{\prime}	σ^{\prime}	e
σ^{\prime}	σ^{\prime}	τ^{\prime}	σ	τ	e	τ^{\prime}

Composition table for SG_{3}

Is SG_{3} Commutative? No

Consider $\tau^{\prime \prime}$ and σ

$$
\begin{aligned}
\tau^{\prime \prime} \circ \sigma & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\tau \\
\sigma \circ \tau^{\prime \prime} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\tau^{\prime}
\end{aligned}
$$

We can see that $\tau \circ \sigma \neq \sigma \circ \tau^{\prime}$.

Proposition 3.4 $S G_{n}(n \geq 3)$ is not Commutative
Proof. Consider $\tau_{n}^{\prime \prime}$ and σ_{n} given by

$$
\begin{aligned}
\tau_{n}^{\prime \prime}(i) & = \begin{cases}\tau^{\prime \prime}(i) & 1 \leq i \leq 3 \\
i & \text { otherwise }\end{cases} \\
\sigma_{e}(i) & = \begin{cases}\sigma(i) & 1 \leq i \leq 3 \\
i & \text { otherwise }\end{cases}
\end{aligned}
$$

$\Longrightarrow \tau_{n}^{\prime \prime} \circ \sigma_{n} \neq \sigma_{n} \circ \tau_{n}^{\prime \prime}$ [From the above example]
Hence $\mathrm{SG}_{n}(n \geq 3)$ is not Commutative

4 Subgroups

Definition 4.1 (Subgroup) Given (G, \cdot) and $H \subseteq G$
H is called a subgroup of G if H is itself a group under the operation of G
i.e., If the following properties hold:

1. Closure: For all $a, b \in H, a \cdot b \in H$.
2. Identity Element: \exists an element $e \in H$ such that for all $a \in H, a * e=e * a=a$
3. Inverse Element: For each $a \in H, \exists a^{-1} \in H$ such that $a * a^{-1}=a^{-1} * a=e$

Notation: $\mathbf{H} \leq \mathbf{G}$

Proposition 4.2 (Two-step Subgroup test) Let $(G, *)$ be a group and $H \subseteq G$.
Then $H \leq G$ if and only if:

1. $\forall a, b, a * b \in H$
2. \exists Identity $e \in H$
3. For all $a \in H, a^{-1} \in H$.

Exercise: Prove that

1. $e_{H}=e_{G}$
2. $h_{H}^{-1}=h_{G}^{-1}$, for any $\left.h \in H\right]$

Proof.

1. For any $h \in H$, we have

$$
\begin{aligned}
h \cdot e_{G} & =e_{G} \cdot h=h \\
\text { Also, } h \cdot e_{H} & =e_{H} \cdot h=h \\
\therefore e_{G} & =e_{H} \text { (As Cancellation Laws hold in G) }
\end{aligned}
$$

2. For any $h \in H$, we have

$$
\begin{aligned}
h \cdot h_{G}^{-1} & =h_{G}^{-1} \cdot h=e_{G} \\
\text { Also, } h_{H}^{-1} \cdot h & =e_{H}=e_{G}(\text { Part 1) } \\
\therefore h_{H}^{-1} & =h_{G}^{-1}(\text { As Cancellation Laws hold in G) }
\end{aligned}
$$

Example Let's look at a few Examples

1. Subgroups of SG_{3}

$$
\{e\}, S G_{3},\{e, \tau\},\left\{e, \tau^{\prime}\right\},\left\{e, \tau^{\prime \prime}\right\},\left\{e, \sigma, \sigma^{\prime}\right\}
$$

2. Subgroup of $G L_{2}(\mathbb{R})$

$$
\left\{\left[\begin{array}{cc}
a & b \\
0 & d
\end{array}\right]: a, b, d \in \mathbb{R}, a d \neq 0\right\}
$$

3. Subgroups of $(\mathbb{Z},+)$

$$
\{e\}, 2 \mathbb{Z}
$$

Proposition 4.4 Any subgroup of $(\mathbb{Z},+)$ is of the form $(m \mathbb{Z},+)$, for some $m \in \mathbb{Z}$.
Proof.
$\Longleftarrow \quad[(m \mathbb{Z},+) \leq(\mathbb{Z},+)$ for any $m \in \mathbb{Z}]$

1. Consider arbitrary $x, y \in m \mathbb{Z}$

$$
\begin{aligned}
& x=m k \text { and } y=m l \text { for some } k, l \in \mathbb{Z} \\
& \Longrightarrow x+y=m k+m l \\
& =m(k+l) \in m \mathbb{Z} \text { as } k+l \in \mathbb{Z}
\end{aligned}
$$

\therefore For any $x, y \in m \mathbb{Z}, x+y \in m \mathbb{Z}$.
2. $0=m \cdot 0 \in m \mathbb{Z}$.
3. Consider an arbitrary $x \in m \mathbb{Z}$

$$
\begin{aligned}
& x=m(p) \text { for some } p \in \mathbb{Z} \\
& -x=-m p=m(-p) \in m \mathbb{Z} \text { as }-p \in \mathbb{Z} \\
& x \in m \mathbb{Z} \Longrightarrow-x \in m \mathbb{Z}[\text { Here } x+(-x)=0]
\end{aligned}
$$

Thus, $(m \mathbb{Z},+)$ forms a subgroup of $(\mathbb{Z},+)$ [Two-step Subgroup test]
$\Longrightarrow \quad[$ Any $(H,+) \leq(\mathbb{Z},+)$ is of the form $(m \mathbb{Z},+)$ for some $m \in \mathbb{Z}]$

- $H=\{0\}$, we are done
- Suppose $H \neq\{0\}$.

Without loss of generality, assume H contains positive integers
Suppose m^{\prime} be the least positive integer in H
[Existence of m ' is guaranteed by Well-ordering principle]
We know that $m^{\prime} \mathbb{Z} \subset H[\because H \leq(\mathbb{Z},+)]$
Claim: $m^{\prime} \mathbb{Z}=H$

Proof by Contradiction

Suppose not, i.e. $m^{\prime} \mathbb{Z} \neq H$

$$
\Longrightarrow \exists x \in H \ni x \notin m^{\prime} \mathbb{Z}
$$

Now we have $x=m^{\prime} y+r$, where $y, r \in \mathbb{Z}$ and $0<r<m^{\prime}$ Also $m^{\prime} y \in m^{\prime} \mathbb{Z} \subset H$
$\Longrightarrow m^{\prime} y \in H$ and $-m^{\prime} y \in H$
$\therefore x-m^{\prime} y=x+\left(-m^{\prime} y\right) \in H($ As $x \in H)$
So $r \in H$, but we see that $r<m^{\prime}$
This contradicts the fact that m^{\prime} is the least positive integer in H

$$
\therefore m^{\prime} \mathbb{Z}=H
$$

