January 23 2024

Lecture 5: Groups: An introduction

Lecture: Sujata Ghosh

Scribe: Sai Srujan P

1 Topics for this lecture

In this lecture, we shall talk about the following

- 1. Motivation: Matrices example
- 2. Groups
- 3. Subgroups

2 Motivation

Definition 2.1 $(M_n(\mathbb{R}))$ Set of $n \times n$ matrices with real entries

a_{11}	a_{12}	• • •	a_{1n}
a_{21}	a_{22}	•••	a_{2n}
:	÷	۰.	÷
a_{n1}	a_{n2}	•••	a_{nn}

where $a_{ij} \in \mathbb{R}$.

2.1 Set Operations

Now, let us consider two operations Addition(+) and Multiplication(.).

Before proceeding further, let us define certain properties.

Closure Property

A set A is closed under the operation *, if for all $a, b \in A$, the result of a * b is also in A.

$$\forall \ a, b \in A, \quad a * b \in A$$

Associative Property

The operation * is associative on A if

$$\forall \ a, b, c \in A, \quad (a * b) * c = a * (b * c)$$

Identity Element

There exists an identity element $e \in A$ such that, for all $a \in A$:

$$\exists \ e \in A \quad \ni \quad a * e = e * a = a \quad \forall a \in A$$

Inverse Element

For each element $a \in A$, there exists an inverse element $a^{-1} \in A$ i.e.

$$\forall a \in A, \quad \exists a^{-1} \in A \quad \ni a * a^{-1} = a^{-1} * a = e$$

Commutative Property

The operation * is commutative on A if

$$\forall \ a, b \in A, \quad a * b = b * a$$

2.1.1 Addition(+)

Consider $(M_n(\mathbb{R}), +)$ and see whether each of the above properties hold:

1. Closure

Yes, addition of 2 $n \times n$ matrices is an $n \times n$ matrix.

2. Associative

Yes, since each $a_{ij} \in \mathbb{R}$ and \mathbb{R} is associative under +.

3. Identity

Yes, since $\exists 0 \in \mathbb{R}$ and set $a_{ij} = 0 \forall i, j$.

4. Inverse

Yes, since for any given $a \exists -a \in \mathbb{R}$ and set $a_{ij} = -a_{ij} \forall i, j$.

5. Commutative

Yes, since $a + b = b + a \forall a, b \in \mathbb{R}$.

2.1.2 Addition(+)

Consider $(M_n(\mathbb{R}), \times)$ and see whether each of the above properties hold:

1. Closure

Yes, multiplication of 2 $n \times n$ matrices is an $n \times n$ matrix.

2. Associative

Yes, it can be easily verifiable from the definition of $A \times B$

3. Identity

Yes, \exists Identity I_n

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

i.e.
$$a_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

4. Inverse

No, $\exists A^{-1} \ni A \times A^{-1} = A^{-1} \times A = I_n$ iff |A|! = 0.

5. Commutative

No, if we take
$$n \ge 2$$

For suppose take $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
Then $AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
Also, $BA = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Here $AB \neq BA$, therefore not Commutative.

2.1.3 General Linear Group $(GL_n(\mathbb{R}))$

Define

$$GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid A \text{ is invertible}\}$$

- **Q.** Consider $A, B \in GL_n(\mathbb{R})$
 - Would $A + B \in GL_n(\mathbb{R})$? No

Explanation

For any A, Consider B = -A

$$A + (-A) = 0 \notin GL_n \mathbb{R}$$

• Would $AB \in GL_n(\mathbb{R})$?

Yes

Explanation

From the definition of Inverse above A matrix $A \in M_n(\mathbb{R})$ is said to be invertible iff

 $\exists B \in M_n(\mathbb{R}) \text{ such that } AB = BA = I_n$

Here B is the inverse of A.

Now, $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I_n$.

 $\therefore AB$ is invertible whenever A, B are invertible, and $B^{-1}A^{-1}$ is the inverse of AB

Consider $(\mathbf{GL}_{\mathbf{n}}(\mathbf{R}), \cdot)$. Let's check each of the properties defined above:

1. Closure:

Yes (Explanation: Previous paragraph)

2. Associative:

Yes,

Since associativity with respect to '.' holds for any 3 matrices, it also holds for $GL_n(\mathbb{R})$.

3. Identity:

Yes, We can observe that I_n is the identity since, $AI_n = I_n A = A$ for any $A \in GL_n(\mathbb{R})$.

4. Inverse:

Yes, From the definition of $GL_n(\mathbb{R})$, it holds for any $A \in GL_n(\mathbb{R})$.

5. Commutative:

No,

Since Matrices in general are not commutative with respect to '.'.

3 Groups

Consider (**G**, *), where, $G \neq \phi$ and *:binary operation on **G**.

Definition 3.1 (Binary Operation) A binary operation on a set S is

 $\begin{aligned} mapping \ *: S \times S \to S \\ \ni each \ (a,b) \to a * b \ over \ S \end{aligned}$

Definition 3.2 (Group) We say that $(\mathbf{G}, *)$ is a Group if the following conditions hold:

- 1. Associative: $\forall a, b, c \in G, (a * b) * c = a * (b * c) \in G$
- 2. Identity: \exists an element $e \in G \quad \ni \quad \forall a \in G, a * e = e * a = a$
- 3. Inverse: For each $a \in G, \exists a^{-1} \in G \quad \ni \quad a * a^{-1} = a^{-1} * a = e$

Example The following are a few examples.

1. $(\mathbf{Z}, +)$ forms a group

Here Identity: 0, and Given $a \in \mathbf{Z}$, -a is it's Inverse

2. Let S be any non-empty set, and let $G = \{\rho : \rho \text{ is a bijection on } S\}$. Consider (G, \circ) , where \circ is the composition of two bijections. Then, (G, \circ) forms a group.

We generally call it the symmetric group on S and denote it by SG_3

Consider $SG_{\{1,2\}} = (\{e, \tau\}).$

$$e = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
$$\frac{\circ \mid e \mid \tau}{e \mid e \mid \tau}$$
$$\tau \mid \tau \mid e$$

Composition table for S

From the table above we see that for any $a, b \in SG_{\{1,2\}}$, $a \circ b = b \circ a$ [Composition table is Symmetric].

 \therefore SG_{1,2} a Commutative Group, denoted as SG₂

3. $SG_{\{1,2,3\}} = \mathbf{SG_3}$.

The elements of SG_3 :

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad \tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$\tau' = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad \tau'' = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \sigma' = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Exercise Composition Table for SG_3 .

Is SG₃ Commutative? No

Consider $\tau'' \ and \ \sigma$

$$\tau'' \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \tau$$
$$\sigma \circ \tau'' = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \tau'$$

We can see that $\tau \circ \sigma \neq \sigma \circ \tau'$.

Proposition 3.4 $SG_n (n \ge 3)$ is not Commutative

Proof. Consider $\tau_n^{''}$ and σ_n given by

$$\tau_n''(i) = \begin{cases} \tau''(i) & 1 \le i \le 3, \\ i & \text{otherwise.} \end{cases}$$
$$\sigma_e(i) = \begin{cases} \sigma(i) & 1 \le i \le 3, \\ i & \text{otherwise.} \end{cases}$$

 $\implies \tau_n^{''} \circ \sigma_n \neq \sigma_n \circ \tau_n^{''}$ [From the above example]

Hence $SG_n (n \ge 3)$ is not Commutative

4 Subgroups

Definition 4.1 (Subgroup) Given (G, \cdot) and $H \subseteq G$

H is called a subgroup of G if H is itself a group under the operation of G i.e., If the following properties hold:

- 1. Closure: For all $a, b \in H$, $a \cdot b \in H$.
- 2. Identity Element: \exists an element $e \in H$ such that for all $a \in H$, a * e = e * a = a
- 3. Inverse Element: For each $a \in H, \exists a^{-1} \in H$ such that $a * a^{-1} = a^{-1} * a = e$

Notation: $\mathbf{H} \leq \mathbf{G}$

Proposition 4.2 (Two-step Subgroup test) Let (G, *) be a group and $H \subseteq G$. Then $H \leq G$ if and only if:

- 1. $\forall a, b, a * b \in H$
- 2. \exists Identity $e \in H$
- 3. For all $a \in H$, $a^{-1} \in H$.

Exercise: Prove that

1. $e_H = e_G$

2.
$$h_{H}^{-1} = h_{G}^{-1}$$
, for any $h \in H$]

Proof.

1. For any $h \in H$, we have

 $h \cdot e_G = e_G \cdot h = h$ Also, $h \cdot e_H = e_H \cdot h = h$ $\therefore e_G = e_H$ (As Cancellation Laws hold in G)

2. For any $h \in H$, we have

$$\begin{split} h \cdot h_G^{-1} &= h_G^{-1} \cdot h = e_G \\ \text{Also, } h_H^{-1} \cdot h &= e_H = e_G \text{ (Part 1)} \\ \therefore h_H^{-1} &= h_G^{-1} \text{ (As Cancellation Laws hold in G)} \end{split}$$

Example Let's look at a few Examples

1. Subgroups of SG_3

$$\{e\}, SG_3, \{e, \tau\}, \{e, \tau'\}, \{e, \tau"\}, \{e, \sigma, \sigma'\}$$

2. Subgroup of $GL_2(\mathbb{R})$

$$\left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \right\}$$

3. Subgroups of $(\mathbb{Z}, +)$

 $\{e\}, 2\mathbb{Z}$

Proof. $[(m\mathbb{Z},+) \leq (\mathbb{Z},+) \text{ for any } m \in \mathbb{Z}]$ \Leftarrow 1. Consider arbitrary $x, y \in m\mathbb{Z}$ x = mk and y = ml for some $k, l \in \mathbb{Z}$ $\implies x + y = mk + ml$ $= m(k+l) \in m\mathbb{Z} \text{ as } k+l \in \mathbb{Z}$ \therefore For any $x, y \in m\mathbb{Z}, x + y \in m\mathbb{Z}$. 2. $0 = m \cdot 0 \in m\mathbb{Z}$. 3. Consider an arbitrary $x \in m\mathbb{Z}$ x = m(p) for some $p \in \mathbb{Z}$ $-x = -mp = m(-p) \in m\mathbb{Z}$ as $-p \in \mathbb{Z}$ $x \in m\mathbb{Z} \implies -x \in m\mathbb{Z}$ [Here x + (-x) = 0] Thus, $(m\mathbb{Z}, +)$ forms a subgroup of $(\mathbb{Z}, +)$ [Two-step Subgroup test] [Any $(H, +) \leq (\mathbb{Z}, +)$ is of the form $(m\mathbb{Z}, +)$ for some $m \in \mathbb{Z}$] \implies • $H = \{0\}$, we are done • Suppose $H \neq \{0\}$. Without loss of generality, assume H contains positive integers Suppose m' be the least positive integer in H[Existence of m' is guaranteed by Well-ordering principle] We know that $m'\mathbb{Z} \subset H$ [$\because H \leq (\mathbb{Z}, +)$] Claim: $m'\mathbb{Z} = H$ **Proof by Contradiction** Suppose not, i.e. $m'\mathbb{Z} \neq H$ $\implies \exists x \in H \ni x \notin m'\mathbb{Z}$ Now we have x = m'y + r, where $y, r \in \mathbb{Z}$ and 0 < r < m'Also $m'y \in m'\mathbb{Z} \subset H$ $\implies m'y \in H \text{ and } -m'y \in H$ $\therefore x - m'y = x + (-m'y) \in H$ (As $x \in H$) So $r \in H$, but we see that r < m'This contradicts the fact that m' is the least positive integer in H $\therefore m'\mathbb{Z} = H$ 5-9

Proposition 4.4 Any subgroup of $(\mathbb{Z}, +)$ is of the form $(m\mathbb{Z}, +)$, for some $m \in \mathbb{Z}$.