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1 Cyclic Groups

Cyclic groups are groups in which every element is a power of some fixed element. Here are
the relevant definitions.

1.1 Definitions

Definition. Let G be a group, g ∈ G. The order of g is the smallest positive integer n
such that gn = 1. If there is no positive integer n such that gn = 1, then g has infinite order.

In the case of an abelian group with + as the operation and 0 as the identity, the order
of g is the smallest positive integer n such that ng = 0.

Definition.If G is a group and g ∈ G, then the subgroup generated by g is

〈g〉 = {gn|n ∈ Z}.

If the group is abelian and + is used as the operation, then

〈g〉 = {ng|n ∈ Z}.

Definition.A group G is cyclic if G = 〈g〉 for some g ∈ G. g is a generator of 〈g〉.
If a generator g has order n, G = 〈g〉 is cyclic of order n. If a generator g has infinite

order, G = 〈g〉 is infinite cyclic.

1.2 Examples

Example. (The integers and the integers mod n are cyclic) Show that Z and Zn

for n > 0 are cyclic.
Z is an infinite cyclic group, because every element is a multiple of 1 (or of −1). For

instance, 117 = 117.1. (Remember that “117.1” is really shorthand for 1 + 1 + . . . + 1 —1
added to itself 117 times.)

In fact, it is the only infinite cyclic group up to isomorphism. Notice that a cyclic
group can have more than one generator. If n is a positive integer, Zn is a cyclic group of
order n generated by 1. For example, 1 generates Z7, since

1 + 1 = 2

1 + 1 + 1 = 3

1 + 1 + 1 + 1 = 4

1 + 1 + 1 + 1 + 1 = 5

1 + 1 + 1 + 1 + 1 + 1 = 6

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0
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In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.

Figure 1: a cyclic group of order 7

Notice that 3 also generates Z7:

3 + 3 = 6

3 + 3 + 3 = 2

3 + 3 + 3 + 3 = 5

3 + 3 + 3 + 3 + 3 = 1

3 + 3 + 3 + 3 + 3 + 3 = 4

3 + 3 + 3 + 3 + 3 + 3 + 3 = 0

The “same” group can be written using multiplicative notation this way:

Z7 = {1, a, a2, a3, a4, a5, a6}.

In this form, a is a generator of Z7. It turns out that in Z7 = {0, 1, 2, 3, 4, 5, 6}, every
nonzero element generates the group. On the other hand, in Z6 = {0, 1, 2, 3, 4, 5}, only 1
and 5 generate. �

1.3 Some Lemmas and Proofs

Lemma 1.1 Let G = 〈g〉 be a finite cyclic group, where g has order n. Then the powers
{1, g, . . . , gn−1} are distinct.

Proof. Since g has order n, g, g2, . . . , gn−1 are all different from 1.
Now to show that the powers {1, g, . . . , gn−1} are distinct. Suppose gi = gj where

0 ≤ j < i < n. Then 0 < i − j < n and gi−j = 1, contrary to the preceding observation.
Therefore, the powers g, g2, . . . , gn−1 are distinct. 2

Lemma 1.2 Let G = 〈g〉 be infinite cyclic. If m and n are integers and m 6= n, then
gm 6= gn.
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Proof. Suppose without loss of generality that m > n. Now to show that gm 6= gn; suppose
this is false, so gm = gn. Then gm−n = 1, so g has finite order. This contradicts the fact
that a generator of an infinite cyclic group has infinite order. Therefore, gm 6= gn. 2

The next result characterizes subgroups of cyclic groups.

Theorem 1.3 Subgroups of cyclic groups are cyclic.

Proof. We leave out the proof!! 2

Example.[Subgroups of the integers] Describe the subgroups of Z.

Every subgroup of Z has the form nZ for n ∈ Z. For example, here is the subgroup
generated by 13:

13Z = 〈13〉 = {. . .− 26,−13, 0, 13, 26, . . .}.

2 Isomorphism

Groups that are not literally the same may be structurally the same. An example of this
idea is the relation between multiplication and addition via exponentiation:

exey = ex+y

Every number in R>0 has the form ex for exactly one x ∈ R, and the above equation
tells us that when we write numbers in R>0 as ex then multiplying in R>0 corresponds to
adding the exponents in R. Going the other way, every real number has the form lnx for
exactly one x > 0, and addition of logarithm values corresponds to multiplication inside
the logarithm:

ln(x) + ln(y) = ln(xy).

The functions exp: R→ R > 0 and ln : R>0 → R make the groups R>0 and R look the same:
they are each a bijective way of passing between the two groups that turn the operation in
one group into the operation in the other group (e.g. doubling in R is like squaring in R>0).

Figure 2: The groups R and R>0, linked by x 7→ ex and y 7→ ln y.

Definition 2.1 An isomorphism f : G → G̃ between two groups G and G̃ is a bijective
homomorphism. When there is an isomorphism between G and G̃, the groups are called
isomorphic and we write G ∼= G̃.
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An isomorphism between two groups is a dictionary that lets us translate elements and
operations from one group to the other without losing essential information. For example,
we’ll see that all cyclic groups of the same size are isomorphic, so if we understand one
cyclic group then we can usually transfer that understanding to all the other cyclic groups
of the same size. Isomorphisms are the way to express how two groups that are different
are nevertheless basically the same.

2.1 Examples of Isomorphisms

Example 1. The exponential function exp: R → R>0, sending each x ∈ R to ex, is an
isomorphism: it is a homomorphism since ex+y = exey and it is a bijection since it has an
inverse function, the natural logarithm.

More generally, for each b > 0 with b 6= 1 the function f : R→ R>0 given by f(x) = bx

is an isomorphism: it is a homomorphism since f(x + y) = bx+y = bxby = f(x)f(y), and it
is a bijection since it has logb x as an inverse function. Figure ?? shows some corresponding
elements of R and R>0 under this isomorphism.

Going the other way, logb : R>0 → R is an isomorphism: it is a homomorphism since
logb(xy) = logb x + logb y, and it is a bijection since it has bx as an inverse function.

Example. 2 The groups D3 and S3 are isomorphic. Evidence that they resemble each
other is that both groups have order 6, three elements of order 2, and two elements of order
3 (and of course one element of order 1: the identity). To create an isomorphism from D3

to S3, label the vertices of an equilateral triangle as 1, 2, and 3 (see Figure ??) so that each
element of D3 permutes the vertices and thus can be turned into an element of S3.

Figure 3:

Let r be a counterclockwise rotation by 120 degrees and s be the reflection across the
horizontal dashed line. Then rs and r2s are reflections across the other dashed lines. The
vertex labels in the picture lead to the table below turning elements of D3 into elements of
S3.

Figure 4:

The correspondence in the table is compatible with the group laws in D3 and S3, e.g., r
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has order 3 and (123) has order 3, s has order 2 and (23) has order 2, and sr = r−1s while
(23)(123) = (123)−1(23). If we let f : D3 → S3 by the table above, it is a bijection and a
tedious calculation (omitted) can verify that it is a homomorphism. Since f is a bijective
homomorphism from D3 to S3, it is an isomorphism.
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