Elements of Algebraic Structures

Lecture 7: Normal Subgroup

Lecture: Sujata Ghosh Scribe: Rajdeep Das and Soumik Guha Roy

Contents

1	Cycle and Transposition		
	1.1	Definition	7-1
		1.1.1 Example	7-2
	1.2	Even permutation	7-2
	1.3	Odd permutation	7-3
2	Relation between SG_n and GL_n		
	2.1	Permutation Matrix A_{σ} w.r.t a permutation $\sigma \in SG_n$	7-3
3	Ker	nel of a Homomorphism	7-4
4	Mo	nomorphism and kerf	7-4
5	Normal Subgroup		
	5.1	Definition	7-5
	5.2	Examples of Normal subgroups	7-5
	5.3	Subgroup vs Normal subgroup	7-6
	5.4	Special Linear Group	7-6
	5.5	Alternating group	7-6
	5.6	Center of a Group	7-7
	5 7		

1 Cycle and Transposition

1.1 Definition

- A permutation which can be represented in a cyclic form is called a **cycle**.
- A permutation which replaces n objects cyclically is called a **cyclic** or **circular permutation of degree n**
- In a permutation, the cycle of length 2 is called **transposition**.

1.1.1 Example

Examples of Cycles and Degree of cycles

- Consider the permutation: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$. This permutation can also be written in the cyclic form $(1 \ 2 \ 4 \ 3)$ with a degree 4.
- Consider the permutation: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$. This permutation can also be written in the cyclic form $(1) \circ (2) \circ (3) \circ (4)$. Each of the 4 cycle has degree 1 and the permutation has no transpositions or cycles of length 2.
- Consider the permutation: $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$. This permutation can also be written in the cyclic form $(1 \ 2) \circ (3 \ 4)$. Both the cycle has degree 2 and the permutation has 2 transpositions.
- Consider the group SG_3 and $\tau \in SG_3.\tau$ can also be written in the cyclic form as $(1) \circ (2 \ 3)$. Here the 1^{st} cycle has degree 1 and the 2^{nd} cycle has degree 2. The permutation has only one transposition.

1.2 Even permutation

- If a permutation is a product of even number of transposition, then the permutation is called **even permutation**.
- An even permutation $\sigma \in SG_n$ is such that $A_{\sigma} \in GL_n(\mathbb{R})$ is obtained from $I_n \in M_n(\mathbb{R})$ by even number of column exchanges

Examples of even permutation

- $(1 \ 2 \ 3) = (1 \ 3) \circ (1 \ 2)$
- $(1 \quad 5 \quad 3 \quad 4 \quad 2) = (1 \quad 2) \circ (1 \quad 4) \circ (1 \quad 3) \circ (1 \quad 5)$
- Cosider the following permutation: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 5 & 6 & 7 & 1 & 9 & 10 & 8 \end{pmatrix}$. The cyclic form is $(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7) \circ (8 \ 9 \ 10) = (1 \ 7) \circ (1 \ 6) \circ (1 \ 5) \circ (1 \ 4) \circ (1 \ 3)) \circ (1 \ 2) \circ (8 \ 10) \circ (8 \ 9)$. The given permutation has 8 transpositions. Hence, the permutation is even permutation.

1.3 Odd permutation

- If a permutation is a product of odd number of transposition, then the permutation is called **odd permutation**.
- An even permutation $\sigma \in SG_n$ is such that $A_{\sigma} \in GL_n(\mathbb{R})$ is obtained from $I_n \in M_n(\mathbb{R})$ by odd number of column exchanges

Examples of odd permutation

- $(1 \ 2 \ 3 \ 4) = (1 \ 4) \circ (1 \ 3) \circ (1 \ 2)$
- $(1 \ 6 \ 5 \ 3 \ 4 \ 2) = (1 \ 2) \circ (1 \ 4) \circ (1 \ 3) \circ (1 \ 5) \circ (1 \ 6)$
- Cosider the following permutation: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 1 & 6 & 7 & 8 & 5 & 10 & 9 \end{pmatrix}$. The cyclic form is $(1 \ 2 \ 3 \ 4) \circ (5 \ 6 \ 7 \ 8) \circ (9 \ 10) = (1 \ 4) \circ (1 \ 3) \circ (1 \ 2) \circ (5 \ 8) \circ (5 \ 7)) \circ (5 \ 6) \circ (9 \ 10)$. The given permutation has 7 transpositions. Hence, the permutation is odd permutation.

2 Relation between SG_n and GL_n

2.1 Permutation Matrix A_{σ} w.r.t a permutation $\sigma \in SG_n$

Consider the symmetric group of order 3 donoted by SG_3 and the identity matrix of order 3 which is $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• Now $\tau'' = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Then $A_{\tau''} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ which is obtained by interchanging the

1st and 2nd column of ${\cal I}_3$

• Now $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. In the same way, $A_{\sigma} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ which is obtained by shifting

2nd column to the 1st column and 3rd column to the 2nd column and 1st column to the 3rd column of I_3 , i.e. the j^{th} column of I_3 is replaced by the $\sigma(j)^{th}$ column.

3 Kernel of a Homomorphism

Consider a homomorphism f $f: G \mapsto G^{`}$. Let $g \in G$ and $h \in kerf$. Now as $g, h \in G \implies ghg^{-1} \in G$. Hence $f(ghg^{-1}) = f(g)f(h)f(g^{-1}) = f(g)e_{g^{`}}f(g)^{-1} = f(g)f(g)^{-1} = e_{g^{`}}$ Hence, we can say that $ghg^{-1} \in kerf$. This is true for all $h \in G$. Therefore, $gKerfg^{-1} \subseteq G$

Exercise

Prove that $kerf \subseteq g \ Kerf \ g^{-1}, \forall g \in G.$

4 Monomorphism and kerf

Theorem 4.1 Let $\phi : (G, \circ) \mapsto (G', *)$ be a homomorphism. Then ϕ is Monomorphism $\iff ker \phi = \{e_G\}$. That is ker ϕ has only one element e_G .

Proof.

 $(\implies) \text{We have } \phi \text{ is one to one function. Then } \phi(e_G) = e_{G'} \implies e_G \text{ is a pre-image of } e_{G'}.$ Now as ϕ is one to one function , $e_{G'}$ will have only one pre-image $e_G \implies kerf = \{e_G\}$ $(\iff) \text{We have } kerf = \{e_G\} \text{ and let us assume that } a, b \in G \text{ and } \phi(a) = \phi(b).$ Then $\phi(a^{-1} \circ b) = \phi(a^{-1}) * \phi(b)$ $\phi(a^{-1} \circ b) = \phi(a)^{-1} * \phi(b) \text{ [As } \phi : G \mapsto G' \text{ is homomorphism} \implies \forall a \in G, \phi(a^{-1}) = \phi(a)^{-1} \text{]}$ $\phi(a^{-1} \circ b) = \phi(b)^{-1} * \phi(b) \text{ [As } \phi(a) = \phi(b) \text{]}$ $\phi(a^{-1} \circ b) = e_{G'}$ As $ker\phi = \{e_G\} \implies ker\phi$ has only one element $\implies a = b$ Hence, we have shown that $\phi(a) = \phi(b) \implies a = b \implies \phi$ is one-to-one function.

Examples related to theorem 1

• Consider $f: (\mathbb{Z}, +) \mapsto (SG_2, \circ)$. The function f defined as :

$$f(z) = \begin{cases} e & \text{if z is even} \\ \tau & \text{if z is odd} \end{cases}$$
(1)

We can see that $kerf = 2\mathbb{Z} \neq \{0\} \implies f$ is not one-to-one i.e f is not monomorphism.

• Consider $f: (GL_n(\mathbb{R}), *) \mapsto (GL_1(\mathbb{R}), *)$. the function f defined as:

$$f(A) = det(A) \tag{2}$$

We know the identity element of $(GL_1(\mathbb{R}), *)$ is $e'_G = 1$. Hence $kerf = \{A \in GL_1(\mathbb{R}) \text{ where } det(A) = 1\}$. We can say that $I_n \in kerf$ and $RrI_n \in kerf$ f where RrI_n is all row reversed identity matrix of order n. Hence $kerf \neq \{I_n\} \implies f$ is not monomorphism

5 Normal Subgroup

5.1 Definition

Let, G be a group and H is a sub group of G. H is called normal subgroup of G iff $\forall g \in G$ $gHg^{-1} = H$.

Here, $\forall g \in G$ the set $gHg^{-1} = \{ghg^{-1} | \forall h \in H\}$. Notation: H, a subgroup of G is denoted as $H \triangleleft G$.

Exercise

Prove that gHg^{-1} is a subgroup of G, where H is a subgroup of G and $g \in G$.

5.2 Examples of Normal subgroups

- For any homomorphism $f: G \mapsto G'$, $kerf \triangleleft G$.
- If G is commutative group, then any subgroup of G is a normal sub group of G

Figure 1: Subgroup and Normal subgroup.

5.3 Subgroup vs Normal subgroup

Example of subgroup which is not normal subgroup Consider the SG_3 group and subgroup $H=\{e,\tau\}$. Here $\forall a \in SG_3 \ a \circ H \neq H \circ a$. Hence, $H=\{e,\tau\}$ is subgroup of SG_3 but not normal subgroup of SG_3 .

Exercise

- Is there any non-trivial Normal subgroup of the group SG_3 ?
- Show that $\{e, \sigma \sigma'\}$ is a normal subgroup of the group SG_3 .

5.4 Special Linear Group

We are given with $f: (GL_n(\mathbb{R}), *) \mapsto (GL_1(\mathbb{R}), *)$. the function f defined as:

$$f(A) = det(A) \tag{3}$$

then $kerf = \{A \in GL_1(\mathbb{R}) \text{ where } det(A) = 1\}$. Now kerf is a special linear group of order n , denoted by $SL_n(\mathbb{R})$.

• $SL_n(\mathbb{R})$ is also normal subgroup of $GL_n(\mathbb{R})$ under matrix multiplication.

5.5 Alternating group

Consider the groups $SG_n, GL_n(\mathbb{R}), GL_1(\mathbb{R})$. From the section 2.1, we have

$$f: (SG_n, \circ) \mapsto (GL_n(\mathbb{R}), *) \tag{4}$$

From 5.4, we have

$$g: (GL_n(\mathbb{R}), *) \mapsto (GL_1(\mathbb{R}), *)$$
(5)

From 4 and 5, we have

$$h = g \circ f : (SG_n, \circ) \mapsto (GL_1(\mathbb{R}), *)$$
(6)

Now ker $h = \ker g \circ f = \{\sigma : \text{where } det(A_{\sigma}) = 1\}$ also called the **Alternating group** denoted by AG_n .

• Alternating group AG_n is also Normal subgroup.

5.6 Center of a Group

Let us assume that (G, \circ) is a group. If be a subset of G defined as $H = \{x \in G : x \circ g = g \circ x \ \forall g \in G\}$. The set H, called **center of the group G** is subgroup of G.

- Center of a group G is denoted by Z(G).
- Elements of the group Z(G) are called **central element of G**.
- Z(G) is commutative subgroup of group.
- G is commutative group \implies Z(G)=G.

Example: Elements of $Z(\mathbb{Z})$ that is center of the group $(\mathbb{Z}, +)$

 $Z(\mathbb{Z}) = \{...., -3, -2, -1, 0, 1, 2, 3...\} = \mathbb{Z}$

Example: Elements of $Z(\mathbb{R}^*)$ that is center of the group $(\mathbb{R}^*,*)$

 $Z(\mathbb{R}^*) = \mathbb{R}^*$

Exercise

• Prove that $Z(G) \lhd G$

5.7 Aut G

Given a homomorphism f where $f: G \mapsto G$. Aut G defined as set of homomorphism from G to G.

Aut $G = \{ f \mid f : G \mapsto G \}$

Exe	ercise

- Prove that $(Aut(G), \circ)$ is a group.
- Aut G is non-abelian group.