Elements of Algebraic Structures
Lecture 7: Normal Subgroup
Lecture: Sujata Ghosh
Scribe: Rajdeep Das and Soumik Guha Roy

Contents

1 Cycle and Transposition 7-1
1.1 Definition 7-1
1.1.1 Example 7-2
1.2 Even permutation 7-2
1.3 Odd permutation 7-3
2 Relation between $S G_{n}$ and $G L_{n}$ 7-3
2.1 Permutation Matrix A_{σ} w.r.t a permutation $\sigma \in S G_{n}$ 7-3
3 Kernel of a Homomorphism 7-4
4 Monomorphism and kerf 7-4
5 Normal Subgroup 7-5
5.1 Definition 7-5
5.2 Examples of Normal subgroups 7-5
5.3 Subgroup vs Normal subgroup 7-6
5.4 Special Linear Group 7-6
5.5 Alternating group 7-6
5.6 Center of a Group 7-7
5.7 Aut G 7-7

1 Cycle and Transposition

1.1 Definition

- A permutation which can be represented in a cyclic form is called a cycle.
- A permutation which replaces n objects cyclically is called a cyclic or circular permutation of degree n
- In a permutation, the cycle of length 2 is called transposition.

1.1.1 Example

Examples of Cycles and Degree of cycles

- Consider the permutation: $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$.This permutation can also be written in the cyclic form (1243) with a degree 4 .
- Consider the permutation: $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)$.This permutation can also be written in the cyclic form $(1) \circ(2) \circ(3) \circ(4)$.Each of the 4 cycle has degree 1 and the permutation has no transpositions or cycles of length 2 .
- Consider the permutation: $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$.This permutation can also be written in the cyclic form $(12) \circ(34)$.Both the cycle has degree 2 and the permutation has 2 transpositions.
- Consider the group $S G_{3}$ and $\tau \in S G_{3} . \tau$ can also be written in the cyclic form as $(1) \circ(23)$.Here the $1^{\text {st }}$ cycle has degree 1 and the $2^{\text {nd }}$ cycle has degree 2 .The permutation has only one transposition.

1.2 Even permutation

- If a permutation is a product of even number of transposition, then the permutation is called even permutation.
- An even permutation $\sigma \in S G_{n}$ is such that $A_{\sigma} \in G L_{n}(\mathbb{R})$ is obtained from $I_{n} \in M_{n}(\mathbb{R})$ by even number of column exchanges

Examples of even permutation

- $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 2\end{array}\right)$
- ($\left.\begin{array}{lllll}1 & 5 & 3 & 4 & 2\end{array}\right)=\left(\begin{array}{lll}1 & 2\end{array}\right) \circ\left(\begin{array}{lll}1 & 4\end{array}\right) \circ\left(\begin{array}{ll}1 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 5\end{array}\right)$
- Cosider the following permutation: $\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 5 & 6 & 7 & 1 & 9 & 10 & 8\end{array}\right)$.The cyclic form is $(1234567) \circ(8910)=(17) \circ(16) \circ(15) \circ(14) \circ(13)) \circ$ $(12) \circ(810) \circ(89)$.The given permutation has 8 transpositions. Hence, the permutation is even permutation.

1.3 Odd permutation

- If a permutation is a product of odd number of transposition, then the permutation is called odd permutation.
- An even permutation $\sigma \in S G_{n}$ is such that $A_{\sigma} \in G L_{n}(\mathbb{R})$ is obtained from $I_{n} \in M_{n}(\mathbb{R})$ by odd number of column exchanges

Examples of odd permutation

- $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 4\end{array}\right) \circ\left(\begin{array}{ll}1 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 2\end{array}\right)$
- ($\left.\begin{array}{llllll}1 & 6 & 5 & 3 & 4 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right) \circ\left(\begin{array}{ll}1 & 4\end{array}\right) \circ\left(\begin{array}{ll}1 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 5\end{array}\right) \circ\left(\begin{array}{ll}1 & 6\end{array}\right)$
- Cosider the following permutation: $\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 1 & 6 & 7 & 8 & 5 & 10 & 9\end{array}\right)$.The cyclic form is $(1234) \circ(5678) \circ(910)=(14) \circ(13) \circ(12) \circ(58) \circ(57)) \circ$ $(56) \circ(910)$.The given permutation has 7 transpositions. Hence, the permutation is odd permutation.

2 Relation between $S G_{n}$ and $G L_{n}$

2.1 Permutation Matrix A_{σ} w.r.t a permutation $\sigma \in S G_{n}$

Consider the symmetric group of order 3 donoted by $S G_{3}$ and the identity matrix of order
3 which is $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

- Now $\tau^{\prime \prime}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$.Then $A_{\tau^{\prime \prime}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ which is obtained by interchanging the 1st and 2 nd column of I_{3}
- Now $\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$.In the same way, $A_{\sigma}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ which is obtained by shifting 2 nd column to the 1st column and 3rd column to the 2nd column and 1st column to the 3 rd column of I_{3}, i.e the $j^{\text {th }}$ column of I_{3} is replaced by the $\sigma(j)^{\text {th }}$ column.

3 Kernel of a Homomorphism

Consider a homomorphism f $f: G \mapsto G^{*}$. Let $g \in G$ and $h \in k e r f$. Now as $g, h \in G \Longrightarrow$ $g h g^{-1} \in G$.
Hence $f\left(g h g^{-1}\right)=f(g) f(h) f\left(g^{-1}\right)=f(g) e_{g^{\prime}} f(g)^{-1}=f(g) f(g)^{-1}=e_{g^{\prime}}$
Hence, we can say that $g h g^{-1} \in \operatorname{kerf}$. This is true for all $h \in G$.
Therefore, gKerfg $^{-1} \subseteq G$

Exercise

Prove that $\operatorname{ker} f \subseteq g \operatorname{Kerf} g^{-1}, \forall g \in G$.

4 Monomorphism and kerf

Theorem 4.1 Let $\phi:(G, \circ) \mapsto\left(G^{\prime}, *\right)$ be a homomorphism. Then ϕ is Monomorphism $\Longleftrightarrow \operatorname{ker} \phi=\left\{e_{G}\right\}$. That is ker ϕ has only one element e_{G}.

Proof.
(\Longrightarrow) We have ϕ is one to one function. Then $\phi\left(e_{G}\right)=e_{G^{\prime}} \Longrightarrow e_{G}$ is a pre-image of $e_{G^{\prime}}$. Now as ϕ is one to one function, $e_{G^{\prime}}$ will have only one pre-image $e_{G} \Longrightarrow \operatorname{ker} f=\left\{e_{G}\right\}$ (\Longleftarrow) We have $\operatorname{ker} f=\left\{e_{G}\right\}$ and let us assume that $a, b \in G$ and $\phi(a)=\phi(b)$. Then $\phi\left(a^{-1} \circ b\right)=\phi\left(a^{-1}\right) * \phi(b)$
$\phi\left(a^{-1} \circ b\right)=\phi(a)^{-1} * \phi(b)\left[\right.$ As $\phi: G \mapsto G^{\prime}$ is homomorphism $\left.\Longrightarrow \forall a \in G, \phi\left(a^{-1}\right)=\phi(a)^{-1}\right]$
$\phi\left(a^{-1} \circ b\right)=\phi(b)^{-1} * \phi(b)[$ As $\phi(a)=\phi(b)]$
$\phi\left(a^{-1} \circ b\right)=e_{G^{\prime}}$
As $\operatorname{ker} \phi=\left\{e_{G}\right\} \Longrightarrow \operatorname{ker} \phi$ has only one element $\Longrightarrow a=b$
Hence, we have shown that $\phi(a)=\phi(b) \Longrightarrow a=b \Longrightarrow \phi$ is one-to-one function.

Examples related to theorem 1

- Consider $f:(\mathbb{Z},+) \mapsto\left(S G_{2}, \circ\right)$. The function f defined as :

$$
f(z)= \begin{cases}e & \text { if } \mathrm{z} \text { is even } \tag{1}\\ \tau & \text { if } \mathrm{z} \text { is odd }\end{cases}
$$

We can see that $\operatorname{ker} f=2 \mathbb{Z} \neq\{0\} \Longrightarrow \mathrm{f}$ is not one-to-one i.e f is not monomorphism.

- Consider $f:\left(G L_{n}(\mathbb{R}), *\right) \mapsto\left(G L_{1}(\mathbb{R}), *\right)$. the function f defined as:

$$
\begin{equation*}
f(A)=\operatorname{det}(A) \tag{2}
\end{equation*}
$$

We know the identity element of $\left(G L_{1}(\mathbb{R}), *\right)$ is $e_{G}^{\prime}=1$. Hence $\operatorname{ker} f=\{A \in$ $G L_{1}(\mathbb{R})$ where $\left.\operatorname{det}(A)=1\right\}$. We can say that $I_{n} \in \operatorname{kerf}$ and $\operatorname{Rr} I_{n} \in \operatorname{ker}$ f where $\operatorname{Rr} I_{n}$ is all row reversed identity matrix of order n. Hence $\operatorname{ker} f \neq$ $\left\{I_{n}\right\} \Longrightarrow f$ is not monomorphism

5 Normal Subgroup

5.1 Definition

Let, G be a group and H is a sub group of G . H is called normal subgroup of G iff $\forall g \in G$ $g H g^{-1}=H$.
Here, $\forall g \in G$ the set $g H g^{-1}=\left\{g h g^{-1} \mid \forall h \in H\right\}$.
Notation: H, a subgroup of G is denoted as $H \triangleleft G$.

Exercise

Prove that $g \mathrm{Hg}^{-1}$ is a subgroup of G , where H is a subgroup of G and $g \in G$.

5.2 Examples of Normal subgroups

- For any homomorphism $f: G \mapsto G^{〔}, \operatorname{ker} f \triangleleft G$.
- If G is commutative group, then any subgroup of G is a normal sub group of G

Figure 1: Subgroup and Normal subgroup.

5.3 Subgroup vs Normal subgroup

Example of subgroup which is not normal subgroup
Consider the $S G_{3}$ group and subgroup $\mathrm{H}=\{e, \tau\}$. Here $\forall a \in S G_{3} a \circ H \neq H \circ a$. Hence, $\mathrm{H}=\{e, \tau\}$ is subgroup of $S G_{3}$ but not normal subgroup of $S G_{3}$.

Exercise

- Is there any non-trivial Normal subgroup of the group $S G_{3}$?
- Show that $\left\{e, \sigma \sigma^{\prime}\right\}$ is a normal subgroup of the group $S G_{3}$.

5.4 Special Linear Group

We are given with $f:\left(G L_{n}(\mathbb{R}), *\right) \mapsto\left(G L_{1}(\mathbb{R}), *\right)$. the function f defined as:

$$
\begin{equation*}
f(A)=\operatorname{det}(A) \tag{3}
\end{equation*}
$$

then $\operatorname{kerf}=\left\{A \in G L_{1}(\mathbb{R})\right.$ where $\left.\operatorname{det}(A)=1\right\}$. Now kerf is a special linear group of order n , denoted by $S L_{n}(\mathbb{R})$.

- $S L_{n}(\mathbb{R})$ is also normal subgroup of $G L_{n}(\mathbb{R})$ under matrix multiplication.

5.5 Alternating group

Consider the groups $S G_{n}, G L_{n}(\mathbb{R}), G L_{1}(\mathbb{R})$.From the section 2.1, we have

$$
\begin{equation*}
f:\left(S G_{n}, \circ\right) \mapsto\left(G L_{n}(\mathbb{R}), *\right) \tag{4}
\end{equation*}
$$

From 5.4, we have

$$
\begin{equation*}
g:\left(G L_{n}(\mathbb{R}), *\right) \mapsto\left(G L_{1}(\mathbb{R}), *\right) \tag{5}
\end{equation*}
$$

From 4 and 5,we have

$$
\begin{equation*}
h=g \circ f:\left(S G_{n}, \circ\right) \mapsto\left(G L_{1}(\mathbb{R}), *\right) \tag{6}
\end{equation*}
$$

Now ker $h=\operatorname{ker} g \circ f=\left\{\sigma:\right.$ where $\left.\operatorname{det}\left(A_{\sigma}\right)=1\right\}$ also called the Alternating group denoted by $A G_{n}$.

- Alternating group $A G_{n}$ is also Normal subgroup.

5.6 Center of a Group

Let us assume that (G, \circ) is a group. H be a subset of G defined as $H=\{x \in G: x \circ g=$ $g \circ x \forall g \in G\}$. The set H, called center of the group G is subgroup of G.

- Center of a group G is denoted by $Z(G)$.
- Elements of the group $\mathrm{Z}(\mathrm{G})$ are called central element of \mathbf{G}.
- $Z(G)$ is commutative subgroup of group.
- G is commutative group $\Longrightarrow \mathrm{Z}(\mathrm{G})=\mathrm{G}$.

Example: Elements of $Z(\mathbb{Z})$ that is center of the group $(\mathbb{Z},+)$

$$
Z(\mathbb{Z})=\{\ldots,-3,-2,-1,0,1,2,3 \ldots\}=\mathbb{Z}
$$

Example: Elements of $Z\left(\mathbb{R}^{*}\right)$ that is center of the group $\left(\mathbb{R}^{*}, *\right)$

$$
Z\left(\mathbb{R}^{*}\right)=\mathbb{R}^{*}
$$

Exercise

- Prove that $Z(G) \triangleleft G$

5.7 Aut G

Given a homomorphism f where $f: G \mapsto G$. Aut G defined as set of homomorphism from G to G.
Aut $\mathrm{G}=\{f \mid f: G \mapsto G\}$

Exercise

- Prove that $(\operatorname{Aut}(G), \circ)$ is a group.
- Aut G is non-abelian group.

