
Elements of Algebraic Structures 9th March 2024

Lecture 8: Cosets

Lecture: Sujata Ghosh Scribe: Rajdeep Das and Soumik Guha Roy

Topics discussed in this lecture
In this lecture, we shall talk about the following

1. Mapping from Group G to its Automorphism Group

2. Maps and Equivalence relation on a Group

3. Cosets

4. Lagrange’s Theorem

1 Mapping from Group G to its Automorphism Group

We are interested to find a mapping f : G → Aut(G) such that Kerf = Z(G) .Here
Z(G) =Centre of the group G . Every element a ∈ G maps to an element f(a) in Aut(G) .
We know Aut(G) is a set of all possible automorphism in G (i.e isomorphism from G to
itself). Hence f(a) is an automorphism in G.
Now let us define the mapping f(g) : G → G as follows

f(g)(h) = g ∗ h ∗ g−1

Now to show f(g) ∈ Aut(g) we proof the following
(1) f(g)(h ∗ h′) = f(g)(h) ∗ f(g)(h′)
(2) f(g) is a bijection
Proving (1)

f(g)(h ∗ h′) = g ∗ (h ∗ h′) ∗ g−1

= (g ∗ h) ∗ (h′ ∗ g−1)

= (g ∗ h) ∗ (g−1 ∗ g) ∗ (h′ ∗ g−1)

= (g ∗ h ∗ g−1) ∗ (g ∗ h′ ∗ g−1)

= f(g)(h) ∗ f(g)(h′)

Proving (2)
For any a, b ∈ G such that f(g)(a) = f(g)(b)
Which implies g ∗ a ∗ g−1 = g ∗ b ∗ g−1 =⇒ a = b
Proving f(g) is injective.
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Now for any a ∈ G we have g ∗ h ∗ g−1 = a for some h ∈ G.
which implies g−1 ∗ h ∗ g = h
Hence f(g) indeed is an Automorphism.
Now

Kerf = {g ∈ G : f(g) is the identity map}
= {g ∈ G : f(g)(h) = h for all h ∈ G}
= {g ∈ G : g ∗ h ∗ g−1 = h for all h ∈ G}
= {g ∈ G : g ∗ h = h ∗ g for all h ∈ G}
= Z(G)

2 Maps and Equivalence relation on a Group

Let S and T are two non-empty sets . Let there is a mapping f : S → T . Now let us define
a binary relation R on S , such that for a, b ∈ S aRb if and only if f(a) = f(b). Clearly
with little effort it can be shown that binary relation R is an Equivalence relation.
Now rather than just being two non-empty sets , if S and T are two groups & f being a
homomorphism. Let K be the set of all equivalence classes induced by the homomorphism
f . Then clearly Kerf ∈ f
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Proposition 2.1 Any member of K is of the form aH = {ah : h ∈ H}, a ∈ G

Proof. For any a ∈ G we need to prove the following

1. aRb → b ∈ aH

2. b ∈ aH → aRb

proving 1 ,
for any a, b ∈ G

aRb → f(a) = f(b)

Pre-Multiplying f(a)−1 both sides of the equation we get the result

eG = f(a)−1 ∗ f(b)
= f(a−1) ∗ f(b)
= f(a−1 ∗ b)

As element a−1 ∗ b maps to eG , We say that a−1 ∗ b ∈ H
Hence for some h ∈ H

a−1 ∗ b = h

b = ah

Hence b ∈ aH
proving 2 ,
for some h ∈ H

b ∈ aH → b = a ∗ h

implies ,

f(b) = f(a ∗ h)
= f(a) ∗ f(h)
= f(a) ∗ eG
= f(a)

Hence aRb
This completes the proof

2
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Proposition 2.2 For any a ∈ H , there exists a bijection between set H and aH .
i.e they have the same cardinality .

Proof. Now lets define f : H → aH by g(h) = a ∗ h
For any two element m,n ∈ H if f(m) = f(n) then implies,

a ∗m = a ∗ n

m = n

Hence f is injective .
Now for surjectivity ,
let there be an element q ∈ aH , then q can be written in the form q = ah for some
h ∈ H. implies ,

h = a−1 ∗ b

hence there exists a pre-image of q. This completes the proof. 2

Corollary 2.3 If G is any finite group , then |G| = |Kerf |.|Image(f)|

An application of this corrollary :
Consider SGn and AGn

We have |SGn| = n!
Consider g : SGn → {1,−1}(via GLn(R))
We know Kerg = AGn

so , |SGn| = |AGn|.2
i.e |AGn| = n!/2

3 Cosets

Definition

Let G be a group and H be a subgroup of G. The left coset of H in G is defined as:

aH = {ah : h ∈ H},

where a ∈ G.
Similarly, the right coset of H in G is defined as:

Ha = {ha : h ∈ H},

where a ∈ G.
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Examples

1. Let G = Z, the group of integers under addition, and H = 2Z, the subgroup of even
integers. Then:

1 + 2Z = {1 + 2k : k ∈ Z} = {...,−3,−1, 1, 3, ...}

the set of all odd integers.

2. Consider the group G = R∗, the set of nonzero real numbers, under multiplication,
and let H = {x ∈ R∗ : |x| = 1} be the subgroup of complex numbers with magnitude
1. Then:

{−1, 1}H = {−1, 1},

and
iH = {i,−i},

where i is the imaginary unit.

3. Let G = S3, the symmetric group on three letters, and H = {e, (1 2)} be the
subgroup generated by the transposition (1 2). Then:

(1 3)H = {(1 3), (1 2 3)},

and
H(1 2) = {(1 2), (1 3 2)}.

We will denote ”Left Coset” as ”Coset” , Unless otherwise specified .
In previous propositions we have found that , We can form a partition in G considering
the subgroup Kerf corresponding to a homomorphism f with domain G.
Is the above observation also true for any subgroup H of G ?
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Proposition 3.1 Let K denote the set of all cosets of H in G. Then, G can be
partitioned by members of K, that is

1. G =
⋃

a∈G aH

2. for any aH, bH ∈ K, either, aH = bH or aH ∩ bH = ∅

Proof.

1. Take any g ∈ G. To show that g ∈ aH for some a ∈ G, note that g ∈ gH and
we are done.

2. Take any aH, bH ∈ K.

• If aH = bH, we are done.

• Suppose not, i.e., aH ̸= bH. We have to show that aH∩bH = ∅. Suppose
not.

• Let c ∈ aH ∩ bH. Then c ∈ aH and c ∈ bH. So, c = ah1 = bh2 for some
h1, h2 ∈ H.

• Then, a = bh2h
−1
1 ∈ bH, so aH ⊆ bH.

• Similarly, we can show that bH ⊆ aH.

• So, aH = bH, a contradiction. Hence, the proof is complete.

2

Thus, G can be partitioned by the cosets of H in G, where H is a subgroup of
G. Also, the cardinality of each such coset of H is the same as that of H.
Let us denote the number of such cosets of H in G to be the index of H in G, written as
[G : H].

Corollary 3.2 If G is a finite group, then |G| = |H| · [G : H].

This immediately tells us that for a finite group G, and a subgroup H of G:

4 Lagrange’s Theorem

Theorem 4.1 Lagrange’s Theorem: The order of a subgroup of a finite group G
divides the order of G.

4.1 Application of Lagrange’s theorem

1. Let G be a finite group and let g ∈ G. Then, OG(g)
∣∣|G|.

Proof. Take g ∈ G.
Consider ⟨g⟩, the cyclic subgroup of G generated by g.
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Now, by Lagrange’s theorem, |⟨g⟩|
∣∣|G|. But |⟨g⟩| = OG(g).

Hence, the result. 2

Lagrange Theorem

Claim 4.2 Let G be a finite group and let H be a subgroup of G. Then |G|/|H| =
[G : H] is the number of distinct left cosets of H in G. In particular, the number of
elements in H must divide the number of elements in G.

Proof. The group G is partitioned into [G : H] distinct left cosets. Each left coset
has |H| elements; therefore, |G| = [G : H]|H|. 2

Homework:Let H and K be subgroups of a finite group G such that G ⊇ H ⊇ K.
Then show that [G : K] = [G : H][H : K].

Homework: Is the converse of Lagrange’s Theorem true? Prove or disprove
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