Elements of Algebraic Structures

9th March 2024

Lecture 8: Cosets

Lecture: Sujata Ghosh

Scribe: Rajdeep Das and Soumik Guha Roy

Topics discussed in this lecture

In this lecture, we shall talk about the following

- 1. Mapping from Group G to its Automorphism Group
- 2. Maps and Equivalence relation on a Group
- 3. Cosets
- 4. Lagrange's Theorem

1 Mapping from Group G to its Automorphism Group

We are interested to find a mapping $f: G \to Aut(G)$ such that Kerf = Z(G). Here Z(G) = Centre of the group G. Every element $a \in G$ maps to an element f(a) in Aut(G). We know Aut(G) is a set of all possible automorphism in G (i.e isomorphism from G to itself). Hence f(a) is an automorphism in G.

Now let us define the mapping $f(g): G \to G$ as follows

$$f(g)(h) = g * h * g^{-1}$$

Now to show $f(g) \in Aut(g)$ we proof the following (1) f(g)(h * h') = f(g)(h) * f(g)(h')(2) f(g) is a bijection Proving (1)

$$\begin{split} f(g)(h*h') &= g*(h*h')*g^{-1} \\ &= (g*h)*(h'*g^{-1}) \\ &= (g*h)*(g^{-1}*g)*(h'*g^{-1}) \\ &= (g*h*g^{-1})*(g*h'*g^{-1}) \\ &= f(g)(h)*f(g)(h') \end{split}$$

Proving (2) For any $a, b \in G$ such that f(g)(a) = f(g)(b)Which implies $g * a * g^{-1} = g * b * g^{-1} \implies a = b$ Proving f(g) is injective. Now for any $a \in G$ we have $g * h * g^{-1} = a$ for some $h \in G$. which implies $g^{-1} * h * g = h$ Hence f(g) indeed is an Automorphism. Now

$$Kerf = \{g \in G : f(g) \text{ is the identity map}\}$$
$$= \{g \in G : f(g)(h) = h \text{ for all } h \in G\}$$
$$= \{g \in G : g * h * g^{-1} = h \text{ for all } h \in G\}$$
$$= \{g \in G : g * h = h * g \text{ for all } h \in G\}$$
$$= Z(G)$$

2 Maps and Equivalence relation on a Group

Let S and T are two non-empty sets . Let there is a mapping $f: S \to T$. Now let us define a binary relation R on S , such that for $a, b \in S$ aRb if and only if f(a) = f(b). Clearly with little effort it can be shown that binary relation R is an Equivalence relation. Now rather than just being two non-empty sets , if S and T are two groups & f being a homomorphism. Let K be the set of all equivalence classes induced by the homomorphism f. Then clearly $Kerf \in f$ **Proposition 2.1** Any member of K is of the form $aH = \{ah : h \in H\}, a \in G$ *Proof.* For any $a \in G$ we need to prove the following 1. $aRb \rightarrow b \in aH$ 2. $b \in aH \rightarrow aRb$ proving 1, for any $a, b \in G$ $aRb \to f(a) = f(b)$ Pre-Multiplying $f(a)^{-1}$ both sides of the equation we get the result $e_G = f(a)^{-1} * f(b)$ $= f(a^{-1}) * f(b)$ $= f(a^{-1} * b)$ As element $a^{-1}\ast b$ maps to e_G , We say that $a^{-1}\ast b\in H$ Hence for some $h \in H$ $a^{-1} * b = h$ b = ahHence $b \in aH$ proving 2, for some $h \in H$ $b \in aH \rightarrow b = a * h$ implies, f(b) = f(a * h)= f(a) * f(h) $= f(a) * e_G$ = f(a)Hence aRbThis completes the proof **Proposition 2.2** For any $a \in H$, there exists a bijection between set H and aH. i.e they have the same cardinality.

Proof. Now lets define $f: H \to aH$ by g(h) = a * hFor any two element $m, n \in H$ if f(m) = f(n) then implies,

a * m = a * n

m = n

Hence f is injective .

Now for surjectivity,

let there be an element $q \in aH$, then q can be written in the form q = ah for some $h \in H.$ implies ,

$$h = a^{-1} * b$$

hence there exists a pre-image of q. This completes the proof.

Corollary 2.3 If G is any finite group, then $|G| = |Kerf| \cdot |Image(f)|$

An application of this corrollary : Consider SG_n and AG_n We have $|SG_n| = n!$ Consider $g: SG_n \to \{1, -1\}$ (via $GL_n(R)$) We know $Kerg = AG_n$ so, $|SG_n| = |AG_n|.2$ i.e $|AG_n| = n!/2$

3 Cosets

Definition

Let G be a group and H be a subgroup of G. The left coset of H in G is defined as:

$$aH = \{ah : h \in H\},\$$

where $a \in G$. Similarly, the right coset of H in G is defined as:

$$Ha = \{ha : h \in H\},\$$

where $a \in G$.

Examples

1. Let $G = \mathbb{Z}$, the group of integers under addition, and $H = 2\mathbb{Z}$, the subgroup of even integers. Then:

$$1+2\mathbb{Z}=\{1+2k:k\in\mathbb{Z}\}=\{...,-3,-1,1,3,...\}$$

the set of all odd integers.

2. Consider the group $G = \mathbb{R}^*$, the set of nonzero real numbers, under multiplication, and let $H = \{x \in \mathbb{R}^* : |x| = 1\}$ be the subgroup of complex numbers with magnitude 1. Then:

$$\{-1,1\}H = \{-1,1\},\$$

and

$$iH = \{i, -i\},$$

where i is the imaginary unit.

3. Let $G = S_3$, the symmetric group on three letters, and $H = \{e, (12)\}$ be the subgroup generated by the transposition (12). Then:

$$(13)H = \{(13), (123)\},\$$

and

$$H(1\,2) = \{(1\,2), (1\,3\,2)\}.$$

We will denote "Left Coset" as "Coset", Unless otherwise specified.

In previous propositions we have found that , We can form a partition in G considering the subgroup Kerf corresponding to a homomorphism f with domain G. Is the above observation also true for any subgroup H of G?

Proposition 3.1 Let \mathcal{K} denote the set of all cosets of H in G. Then, G can be partitioned by members of \mathcal{K} , that is

1. $G = \bigcup_{a \in G} aH$

2. for any $aH, bH \in \mathcal{K}$, either, aH = bH or $aH \cap bH = \emptyset$

Proof.

- 1. Take any $g \in G$. To show that $g \in aH$ for some $a \in G$, note that $g \in gH$ and we are done.
- 2. Take any $aH, bH \in \mathcal{K}$.
 - If aH = bH, we are done.
 - Suppose not, i.e., $aH \neq bH$. We have to show that $aH \cap bH = \emptyset$. Suppose not.
 - Let $c \in aH \cap bH$. Then $c \in aH$ and $c \in bH$. So, $c = ah_1 = bh_2$ for some $h_1, h_2 \in H$.
 - Then, $a = bh_2h_1^{-1} \in bH$, so $aH \subseteq bH$.
 - Similarly, we can show that $bH \subseteq aH$.
 - So, aH = bH, a contradiction. Hence, the proof is complete.

Thus, G can be partitioned by the cosets of H in G, where H is a subgroup of G. Also, the cardinality of each such coset of H is the same as that of H. Let us denote the number of such cosets of H in G to be the index of H in G, written as [G:H].

Corollary 3.2 If G is a finite group, then $|G| = |H| \cdot [G:H]$.

This immediately tells us that for a finite group G, and a subgroup H of G:

4 Lagrange's Theorem

Theorem 4.1 Lagrange's Theorem: The order of a subgroup of a finite group G divides the order of G.

4.1 Application of Lagrange's theorem

1. Let G be a finite group and let $g \in G$. Then, $\mathcal{O}_G(g)||G|$.

Proof. Take $g \in G$.

Consider $\langle g \rangle$, the cyclic subgroup of G generated by g.

Now, by Lagrange's theorem, $|\langle g \rangle| ||G|$. But $|\langle g \rangle| = \mathcal{O}_G(g)$. Hence, the result.

Lagrange Theorem

Claim 4.2 Let G be a finite group and let H be a subgroup of G. Then |G|/|H| = [G:H] is the number of distinct left cosets of H in G. In particular, the number of elements in H must divide the number of elements in G.

Proof. The group G is partitioned into [G : H] distinct left cosets. Each left coset has |H| elements; therefore, |G| = [G : H]|H|.

Homework:Let *H* and *K* be subgroups of a finite group *G* such that $G \supseteq H \supseteq K$. Then show that [G:K] = [G:H][H:K].

Homework: Is the converse of Lagrange's Theorem true? Prove or disprove