Elements of Algebraic Structures 9th March 2024

Lecture 8: Cosets
Lecture: Sujata Ghosh Scribe: Rajdeep Das and Soumik Guha Roy

Topics discussed in this lecture

In this lecture, we shall talk about the following

1. Mapping from Group G to its Automorphism Group

[\)

. Maps and Equivalence relation on a Group
3. Cosets

4. Lagrange’s Theorem

1 Mapping from Group G to its Automorphism Group

We are interested to find a mapping f : G — Aut(G) such that Kerf = Z(G) .Here

Z(G) =Centre of the group G . Every element a € G maps to an element f(a) in Aut(G) .
We know Aut(G) is a set of all possible automorphism in G (i.e isomorphism from G to
itself). Hence f(a) is an automorphism in G.

Now let us define the mapping f(g) : G — G as follows

f@)(h)=gxhxg?

Now to show f(g) € Aut(g) we proof the following

(1) f(g)(h* k) = f(g)(h) = f(g)(h)

(2) f(g) is a bijection

Proving (1)

g* (hxh)xg?

gxh)x (' xg™h)
=(gxh)x (g xg)x (W xg™")
=(gxhxg )x(gxh'+g™")
= f(g)(h) = f(g)(R)

f(g)(hx h)

Proving (2)

For any a,b € G such that f(g)(a) = f(g)(b)
Which implies g xa*x g ' =gxbxg™ ' = a=0b
Proving f(g) is injective.
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L — ¢ for some h € G.

Now for any a € G we have g * h* g~
which implies g '« hxg=h
Hence f(g) indeed is an Automorphism.

Now

Kerf ={g € G: f(g) is the identity map}
={g€ G: f(g9)(h) = h for all h € G}
={geG:gxhxg t=hforalhecG}
={9€G:gxh=hxgforall he G}
=Z(G)

2 Maps and Equivalence relation on a Group

Let S and T are two non-empty sets . Let there is a mapping f : S — 1. Now let us define
a binary relation R on S, such that for a,b € S aRb if and only if f(a) = f(b). Clearly
with little effort it can be shown that binary relation R is an Equivalence relation.

Now rather than just being two non-empty sets , if S and T are two groups & f being a
homomorphism. Let K be the set of all equivalence classes induced by the homomorphism
f. Then clearly Kerf € f
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Proposition 2.1 Any member of K is of the form aH = {ah: h € H},a € G

Proof. For any a € G we need to prove the following
1. aRb— b€ aH

2. beaH — aRb

proving 1 ,
for any a,b € G

aRb — f(a) = f(b)
Pre-Multiplying f(a)~! both sides of the equation we get the result

eq = f(a)~" * f(b)
= f(a™") * f(b)
= fla™" xb)

As element a~! x b maps to e , We say that a=! xb € H
Hence for some h € H

Hence b € aH
proving 2 |
for some h € H
becaH —-b=axh

implies ,
f(b) = flaxh)
= f(a) = f(h)
= f(a) xeq
= f(a)
Hence aRb

This completes the proof
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Proposition 2.2 For any a € H , there exists a bijection between set H and aH .
i.e they have the same cardinality .

Proof. Now lets define f: H — aH by g(h) =axh
For any two element m,n € H if f(m) = f(n) then implies,

a*xm=a*xn

Hence f is injective .
Now for surjectivity ,
let there be an element g € aH , then g can be written in the form g = ah for some
h € H. implies ,
h=a"1%b

hence there exists a pre-image of ¢. This completes the proof. O

Corollary 2.3 If G is any finite group , then |G| = |Ker f|.[Image(f)]

An application of this corrollary :
Consider SG,, and AG,,

We have |SG,| = n!

Consider g : SG,, — {1, —1}(via GL,(R))
We know Kerg = AG,

so , |SG,| =|AG,|.2

ie |[AG,| =n!/2

3 Cosets

Definition

Let G be a group and H be a subgroup of G. The left coset of H in G is defined as:
aH ={ah:h e H},

where a € G.
Similarly, the right coset of H in G is defined as:

Ha = {ha:h € H},

where a € G.
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Examples

1. Let G = Z, the group of integers under addition, and H = 2Z, the subgroup of even
integers. Then:

14+2Z={14+2k:keZ}={.,-3,-1,1,3,...}
the set of all odd integers.

2. Consider the group G = R*, the set of nonzero real numbers, under multiplication,
and let H = {z € R* : |z| = 1} be the subgroup of complex numbers with magnitude
1. Then:
{_1? 1}H = {_17 1}a

and
iH = {i,—i},
where ¢ is the imaginary unit.

3. Let G = S3, the symmetric group on three letters, and H = {e, (12)} be the
subgroup generated by the transposition (12). Then:

(13)H = {(13),(123)},

and
H(12)={(12),(132)}.

We will denote ”Left Coset” as ”Coset” , Unless otherwise specified .

In previous propositions we have found that , We can form a partition in G considering
the subgroup Kerf corresponding to a homomorphism f with domain G.

Is the above observation also true for any subgroup H of G ?
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Proposition 3.1 Let K denote the set of all cosets of H in G. Then, G can be
partitioned by members of KC, that is

.Z. G = UGEG CLH
2. for any aH,bH € IC, either, aH = bH or aH NbH = &
Proof.

1. Take any g € G. To show that g € aH for some a € G, note that g € gH and
we are done.

2. Take any aH,bH € K.

o [faH =bH, we are done.

o Suppose not, i.e., aH # bH. We have to show that aHNbH = &. Suppose
not.

o LetceaHNbH. Then c € aH and c € bH. So, ¢ = ahy = bho for some
hl,hQGH.

o Then, a = bhghl_1 € bH, soaH C bH.
o Similarly, we can show that bH C aH.

e So, aH = bH, a contradiction. Hence, the proof is complete.

a

Thus, G can be partitioned by the cosets of H in GG, where H is a subgroup of
(. Also, the cardinality of each such coset of H is the same as that of H.

Let us denote the number of such cosets of H in G to be the index of H in G, written as
G : H].

Corollary 3.2 If G is a finite group, then |G| = |H| - [G : H].

This immediately tells us that for a finite group G, and a subgroup H of G:

4 Lagrange’s Theorem

Theorem 4.1 Lagrange’s Theorem: The order of a subgroup of a finite group G
divides the order of G.

4.1 Application of Lagrange’s theorem
1. Let G be a finite group and let g € G. Then, Og(g)HG|.

Proof. Take g € G.
Consider (g), the cyclic subgroup of G generated by g¢.
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Now, by Lagrange’s theorem, |(g)|||G|. But [{g)| = O¢(g).
Hence, the result. O

Lagrange Theorem

Claim 4.2 Let G be a finite group and let H be a subgroup of G. Then |G|/|H| =
[G : H] is the number of distinct left cosets of H in G. In particular, the number of
elements in H must divide the number of elements in G.

Proof. The group G is partitioned into [G : H] distinct left cosets. Each left coset
has |H| elements; therefore, |G| = [G : H]|H]|. O

Homework:Let H and K be subgroups of a finite group G such that G O H D K.
Then show that [G : K] =[G : H|[H : K].

Homework: Is the converse of Lagrange’s Theorem true? Prove or disprove
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