Elements of Algebraic Structures

March 10, 2024

Lecture 9: Cosets and Quotient groups

Lecture: Sujata Ghosh

Scribe: Priyanka Jana, Roshni Mondal

1 Topics for this lecture

In this lecture, we shall talk about the following

- 1. Some examples of coset
- 2. First Isomorphism Theorem
- 3. More on Quotient groups

Proposition 1.1 Proof of a finite group of prime order is a cyclic group

Proof. Let |G| = p, a prime number. So, there are non-identity element in G. Take any such element g say. Consider the cyclic sub-group $\langle g \rangle$ generated by g. Then, by Lagrange's theorem $|\langle g \rangle| \mid |G|$. so, $|\langle g \rangle| = 1$ or p. Since $g \neq e_g, |\langle g \rangle| = p$. But $\langle g \rangle \subseteq G$ and hence, $\langle g \rangle = G$. Thus G is a cyclic group.

Problem 1 Any group with prime p as it's order is cyclic. What about any group of order p^2 ?

Solution: Group of order p^2 may not be cyclic. Consider the group of order 4: $\left(\left\{\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}, \begin{bmatrix}-1 & 0\\0 & 1\end{bmatrix}, \begin{bmatrix}1 & 0\\0 & -1\end{bmatrix}, \begin{bmatrix}-1 & 0\\0 & -1\end{bmatrix}\right\}, \cdot\right)$, where all non identity elements are of order 2, hence not cyclic. Klein's 4-group also not cyclic.

2 Some examples of cosets

Example Consider the group $(\mathbb{Z}, +)$. We know that the subgroups are of the form $(n\mathbb{Z}, +)$, where $n \in \mathbb{Z}$. What are the cosets of $(5\mathbb{Z}, +)$? Cosets are $0 + 5\mathbb{Z}$, $1 + 5\mathbb{Z}$, $2 + 5\mathbb{Z}$, $3 + 5\mathbb{Z}$, $4 + 5\mathbb{Z}$.

Exercise Show that the above collection of sets partitions \mathbb{Z} .

Problem 2 What are the cosets of $n\mathbb{Z}$ in \mathbb{Z} , $n \geq 1$?

Solution: The collection of cosets of $n\mathbb{Z}$ in \mathbb{Z} is $\{a + n\mathbb{Z} : 0 \le a \le n - 1\}$. Another way of writing this set is : $\{[0], [1], \ldots, [n-1]\}$ We will denote the set as \mathbb{Z}_n or $\mathbb{Z}/n\mathbb{Z}$.

Exercise Does \mathbb{Z}_n form a group under some operation?

Exercise Does the cosets of kerf in the group G form a group under certain operation?

Exercise Take any group and take any subgroup H of G would the cosets of H in G always formal group under the operation we considered earlier? If not, what condition should we impose on subgroups to make this operation on cosets work?

3 Quotient Groups:

Let G be a group and H be a normal subgroup of G. The group formed the cosets of H in G, denoted by G/H, is called a quotient group of H in G. The group operation is given by: aH * bH = abH for all $a, b \in G$.

Example 1. $(\mathbb{Z}/n\mathbb{Z}, +_n) : (a + n\mathbb{Z}) +_n (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z}.$

2. (G/kerf, *): $(a \cdot kerf) * (b \cdot kerf) = (a \cdot b)kerf$.

4 First Isomorphism Theorem

Theorem 4.1 Let G and G' be two groups and $f: G \to G'$ be an epimorphism. Then, there is an isomorphism between $G/\ker f$ and G'.

Proof. Let H = kerf. Define $h: G/H \to G'$ by $aH \mapsto f(a)$. We would like to show that h is an isomorphism:

$$h(aH * bH) = h(abH)$$

= f(ab)
= f(a) f(b)
= h(aH) h(bH)

Thus, h is a homomorphism.

h is surjective:

Let $g' \in G'$. Then there is $g \in G$ such that f(g) = g'. Thus, h(gH) = g'. Hence, h is surjective.

h is injective:

Suppose $aH, bH \in G/H$ such that

$$\begin{split} h(aH) &= h(bH) \\ \implies f(a) = f(b) \\ \implies f(a)(f(b))^{-1} = e'_G \\ \implies f(ab^{-1}) = e'_G \\ \implies ab^{-1} \in H \\ \implies ab^{-1} \in H \\ \implies a \in bH \\ \implies aH = bH \\ \text{This completes the proof.} \end{split}$$

Example Show that $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ is isomorphic to \mathbb{R}^{\times} . Consider the map $f: GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ defined by $f(A) = \det A$, for all $A \in GL_n(\mathbb{R})$. We can easily verify that f is a surjective group homomorphism. The kernel of the map is $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) : \det A = 1\}$. Hence by First Isomorphism Theorem, the quotient $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ is isomorphic to \mathbb{R}^{\times} .

5 More on Quotient groups:

Let G be a group H be a normal subgroup of G. Consider the quotient group of H in G, $G/H = (\{aH : a \in G\}, *),$ where $\{aH : a \in G\}$ denotes the set of all cosets in G.

5.1 What about the subgroups of G/H? How do they look like?

Take any subgroup K of G such that $H \subseteq K \subseteq G$. Since H is a normal subgroup of G, H is a normal subgroup of K as well. Consider $K/H = \{aH : a \in K\}$. Now the claim is, K/H is a group under the operation * given by aH * bH = abH for all $a, b \in K$. If $a, b \in K$, $ab \in K$. Thus if $aH, bH \in K/H$, then $abH \in K/H$. So $aH * bH \in K/H$. * is associative in K/H. H is the identity element.

 $(aH)^{-1} = a^{-1}H \in K/H$, whenever $aH \in K/H$ (if $a \in K$, then $a^{-1} \in K$). So, K/H is a subgroup of G/H, whenever K is a subgroup of G containing H.

Problem 3 If you take any subgroup G' of G/H, will it always be of the form K/H for some subgroup K of G containing H?

Solution: Consider the quotient group G/H and let G' be a subgroup of G/H. Then, $G' = \{aH : a \in G\} \subseteq G/H$. Is G' = K/H for some K with $H \subseteq K \subseteq G$? Take $K = \{a \in G : aH \in G'\} \subseteq G$. Now $H \subseteq K$ as for any $h \in H$, $hH = H \in G'$. If $a \in K, b \in K$, then $ab \in K$. The operation in K is associative as $K \subseteq G$. $e_G \in K$, as $H \in G'$ Take any $a \in K$. Then $a^{-1} \in K$, as G' is a group. Thus K is a subgroup of G containing H and G' = K/H. Thus any subgroup of G/H is of the form K/H, where K is a subgroup of G containing H.