Algorithmic Problems in Free Gramps

April 5, 2024
Pascal WELL, CNRS
Freely reduced words
A a fie $\begin{gathered}\text { alphabet } \\ \text { set }\end{gathered} \neq \varnothing$

$$
\begin{aligned}
& \bar{A}=\{\bar{a} \mid a \in A\} \\
& \tilde{A}=A \cup \bar{A} \\
& \tilde{A}^{*} \cap A=\varnothing \\
& \text { all wards on alph } \widetilde{A}
\end{aligned}
$$

1 is the empty ward

Notation $\overline{\bar{a}}=a$ foreach $a \in A$

$$
\begin{aligned}
& x \longmapsto \bar{x} \\
& \tilde{A} \longrightarrow \widetilde{A} \text { bij }
\end{aligned}
$$

Wat to see a as am (grap) invere of a

Let as be the cargruence an $\tilde{A}^{t t}$ geverated by ā̄~āa~1 for every $a \in \mathbb{A}$ $u, v \in \widetilde{A}^{x}$
$u \sim v$ iff $\exists u_{0}=u^{\prime}, u_{,}$

$$
\cdots, v_{n-1}, v_{n}=v
$$

st, $u_{i}=p a \bar{o} q$ ad $u_{i+c}=p ;$ or $u_{i}=p q \quad u_{\mu}=p a \bar{q}$,

Exple
$a b \bar{a} a b \bar{b} a$
$\sim a b b \bar{b} a$
$\sim a b c$ redeced
$\sim a \bar{a} a b a$
A ward is reduced if if cartains
(freoly)
no $a \bar{a}$ or àa $(a \in \widetilde{A})$
Prop Every ward ue \tilde{A}^{x} is
s-equivalerto co
urique sedaced word written

$$
u=\frac{p a \bar{a} a q}{b}
$$

B an alphabet, elameto are called letters
wards are sequences of letters
sequences of length $1=B$
sequence of length $0=$ the evepts ward

$$
\begin{aligned}
& B^{*}=a l l \text { words } \\
& 1 \in B^{*}, \quad l \notin B
\end{aligned}
$$

Free group
$F(A)=$ the set of all reduces wards in \tilde{A}^{*}
$u, v \in F(A)$

$$
u \cdot v=\operatorname{red}(u v)
$$

This operation is associative

- \sim is a cargrance that is: ' φ wu? $u_{2} \sim u_{2}^{\prime}$
then rance \sim $u_{1}^{\prime} e_{2}^{\prime}$
- red(ce) is unique

1 is an identity element r

$$
\begin{aligned}
& (l \cdot u=u \cdot(=u) \\
& a \cdot \overline{a_{c}}=\bar{a} \cdot a=1 \quad \text { or } a \in \tilde{A}^{\prime} \\
& \bar{a}=a^{-1} \\
& u=a_{1} \cdots a_{n} \quad u^{-1}=a_{n}^{-1} a_{n-1}^{-1} \ldots a_{1}^{-1} \\
& a_{i} \in \widetilde{A} \quad=\bar{a}_{n} \bar{a}_{n-1} \cdots \bar{a}_{1}
\end{aligned}
$$

$F(A)$ is a grap
called the free grap an A

$$
F(A)=\tilde{A}^{*} / \sim \text { quotieut } \quad \text { manaid, which }
$$

turus out to be a gp.
Let G be any grap ars $\varphi: A \rightarrow G$
be any map
Theen φ exfereds uniquely to a grap havanarphion $\hat{\varphi}: F(A) \rightarrow G$

$$
a b a c \stackrel{\hat{\varphi}}{\longrightarrow} \varphi(a) \varphi(b) \varphi(a) \varphi(c)
$$

$$
\hat{\varphi}(\bar{a})=\varphi(a)^{-1} \quad a \cdot \bar{a} \longmapsto \varphi(a) \varphi(\bar{a})
$$

$a \cdot \bar{a}$ in $F(A) \quad$ malu that $\varphi(\bar{a})=$
is 1 so $\hat{\varphi}(a, \bar{a})=\underbrace{\hat{\varphi}(a)}_{\varphi(a)} \hat{\varphi}(\bar{a})=1$

What if I chomes elphobet
$F(A)$ isameplic $F(B)$
Theorem $F(A) \cong F(B)$ iff $\mid A T=(B)$
$\operatorname{care}(a)=$
Shetch of proof of \Rightarrow card (B)

$$
\begin{aligned}
& \begin{aligned}
F(A) & \xrightarrow{\pi_{A}}(\mathbb{Z} / 2 \mathbb{Z})^{A}= \\
a \longmapsto 1 . a & \underbrace{\oplus}_{\text {vector space }} \mathbb{Z} \mathbb{Z}^{a}
\end{aligned} \\
& a \in A \\
& \text { areck fild } \mathbb{Z} / \mathbb{Z}
\end{aligned}
$$

whe baois A
$|A|=$ rawh T_{A} is a argectie
rown $F(A)$ grap hamamafphisn
if $F\left(A_{1}\right) \xrightarrow{\varphi} F\left(B_{1} \quad\right.$ is an isomeophion

$$
\begin{array}{ccl}
F(A) & \varphi_{3} F(B) & \varphi_{2} \text { isca } \\
\pi_{A} \downarrow & \mathcal{T} T_{B} & \\
V_{A}(\mathbb{Z} / 2 \mathbb{Z})^{A} \xrightarrow{\varphi_{2}}(\mathbb{Z} / 2 \mathbb{Z})^{B} & \mid A t=\operatorname{dim} V_{A} & |B|=\operatorname{dim} V_{B}
\end{array}
$$

$F(A)$ has roble $|A|$
A is a basis of $F(A)$
by def": every el' $f ~ F A 1$ can be witter in a unis way as a reduced word on $\widetilde{A}\left(\right.$ in $\left.\tilde{A}^{*}\right)$

$$
\begin{aligned}
A= & \{a, b\} \\
& \left\{a b^{-1}\right\} \text { is also } \\
& \{a b, b\} \\
\text { a } & \left\{b^{-1} a b, b\right\} \\
& \left\{b^{-1} a b^{2}, b^{-} a b\right\}
\end{aligned}
$$

$$
\left\{a, b^{-1}\right\} \text { is also o basis }
$$

if (u, v) is a basis, t

$$
\begin{aligned}
& \left\{u, v^{-1}\right\} \text { is a basis } \\
& \{w, v \mid \text { is a basis }
\end{aligned}
$$

Hel basis have cardinality rank (FA))

$$
f u_{j}, c_{\text {en }} \text { is abas, } f_{\delta}=|A|
$$

If $\left\{u_{1}, y^{\prime}, u_{n}\right\}$ is a boen's of $F A 1$ an $B=\left|b_{2}, \ldots, b_{n}\right|$ is a set vith n elt
The $F(B) \longrightarrow F(A)$ is an $b_{i} \longmapsto u_{i}$ isomarphism

Prdolem given be, .., ber in $F(A)$ (where LAt=r)
decide whether $\left\{\mu, \ldots, w_{4}\right\}$ is a basin of $F(A)$,

$$
A=(g b)
$$

$\left\{a b a, b a^{-1} b\right\rangle$ baots?

Subgrapes of free graps
Theorem Every (finitels (W:elxem), geverated) subgra-p of $F(A)$ early 20^{k}
antary is free

Cautrory to vector opace
if H is a sulgrap of $F(A)$ rauk (H) weyy be greaterthan \mid Al may even be so
Exampl in $F(a, b)$
ay subsed $\left\{b^{i} a b^{-i} / i \in \mathbb{Z}\right\}$ is a beais
of $t h$ sulograp it geverats
Problems given $g_{,} g_{1}, \cdots g_{n}$ in $F(A)$
let $H=\left\langle g_{n}>g_{n}\right\rangle$

1) is $\left.\left\{g_{i},\right\rangle g_{0} \xi\right\}$ a baois $f k$?
2) $\mathrm{rk}(4)$?
3) is $g \in H$?

Srallings graph of o subgrap
$\mathrm{H} \longrightarrow \Gamma(H)$ a finete courectred suloge greph

$$
\left(\int H=\left\langle a^{2} b a, b a b a^{-1}, b^{-1} a b a^{-1}, a^{3}, b^{2}\right\rangle\right.
$$

$\Gamma(H)$ does not lepend on the set of generctors of b It depends ar te ovey
$T_{0}=$ barpuet of circles
\downarrow folding $L(\sqrt{i})=$ largueg
σ_{1}

$$
\text { in } \tilde{A} \mathcal{A}
$$

$\frac{d}{r_{2}} \quad$ fldir
$\forall u \in H \quad \exists r \in L\left(\Gamma_{0}\right)$ such flat uered (v)
$\frac{d}{\sqrt{(N)}}$

pälaq
Thm A reduces ward is in H
Iilf it is accepted by
$\Gamma(t)$ (seen as an antanction)

You stort whth geverators of H

$$
\left(h_{1},, h_{n}\right)
$$

castruct $\sqrt{(H)}$
given $g, h_{1}, \ldots, h_{u}, H=\left\langle h_{n}, \ldots h_{n}\right\rangle$

$$
\therefore g \text { in } f e \text { ? }
$$

Prep $g \in H$ if g can be read on $\Gamma(r)$ as a cirmut of the base vetex
ls $g_{1}, g_{2},-g_{r}$ a banis of $F(H)$ (chere $|A|=r$)
Let $H=\left\langle g_{g}, g_{r}\right\rangle$

$$
\sigma_{(K)}
$$

$$
\mathcal{G g}_{1}, g_{s} S_{\text {is }}
$$

$$
\begin{aligned}
& H_{\text {is }} F((A) \Leftrightarrow \\
& \Gamma(n)=\Gamma(F(A))
\end{aligned}
$$

$$
\text { banis of } F(A)
$$

$$
\Leftrightarrow \Gamma(\mathbb{H})=
$$

Computation of A-sections $H, K 2$ subgrs of $F(A)$ Caupute $H \cap K$

The St, greph for Hnk is obtaines from $F(r e)$ $\Rightarrow \Gamma(K)$ by the sana prodeut canstruction uned to recognive $L_{1} \cap L_{2}$ when h_{1}, L_{2} are regcor lagrags
Staburs Cardlen; ' \& $r_{k}(k), \quad r k(k)<\infty$ 1983

$$
\text { the } r k(\operatorname{ten} k)<\infty
$$

(Howsan's then 1954)

Burveys
Enric Ventura fordi Delgado
(Barcelana)
see also my welopage

