
Algorithmic problem in free groups

Pascal Weil (CNRS)

ISI, Sujata Ghosh’s class, April 2024

Pascal Weil Algorithmic problem in free groups

Freely reduced words

◮ A a (finite) alphabet (= non-empty set), Ā = {ā | a ∈ A}
disjoint from A, Ã = A∪ Ā. Ã∗ = all words on Ã (free monoid
on Ã). 1 is the empty word.

◮ Notation: ¯̄a = a,

◮ Want to see ā as a (group) inverse of A: let ∼ be the
congruence on Ã∗ generated by aā ∼ āa ∼ 1. That is: if
u, v ∈ Ã∗, then u ∼ v iff there exist u = u0, u1, . . . , uk = v

such that, for each i , you go from ui to ui+1 by deleting or
inserting a factor aā (a ∈ Ã)

◮ Example

◮ u is reduced if it contains no factor aā (a ∈ Ã). Every word is
∼-equivalent to a reduced word (noetherian rewriting system
aā → 1)

◮ confluent rewriting system = every ∼-class contains a single
reduced word. Sketch of proof

Pascal Weil Algorithmic problem in free groups

Free group

◮ F (A) = all reduced words. Multiplication: u · v = red(uv).
This operation is associative (because ∼ is a monoid
congruence). Describe inverse. Thus F (A) is a group, called
the free group on A.

◮ Alternate description: F (A) = Ã∗/ ∼ (monoid quotient, which
turns out to be a group).

◮ If G is a group and ϕ : A → G is any map, then ϕ extends to
a unique group homomorphism ϕ : F (A) → G

◮ What if I change alphabet? Is F (A) isomorphic to F (B)?
◮ Theorem: F (A) is isomorphic to F (B) if and only if |A| = |B |
◮ Sketch of proof: project F (A) to the group

(Z/2Z)A =
⊕

a∈A Z/2Za, by mapping a ∈ A and ā to a.
Surjective. An isomorphism ϕ : F (A) → F (B) yields an
isomorphism ϕ2 : (Z/2Z)

A → (Z/2Z)B . Then linear algebra
tells us that |A| = dim(Z/2Z)A and |B | = dim(Z/2Z)B are
equal.

Pascal Weil Algorithmic problem in free groups

Rank and bases of a free group

◮ |A| is not called the dimension of F (A), it’s called its rank

◮ and A is called a basis of F (A), because every element of
F (A) can be written in a unique way as a reduced word on Ã

◮ Moreover, F (A) has many bases! Suppose A = {a, b}

◮ Then {a, b} is a basis. Also {a−1, b}, {ab, b}, {b−1ab, b},
{b−1ab2, b−1ab}, etc.

◮ Infinitely many bases, in fact: if {u, v} is a basis, so are
{u−1, v} and {uv , u}

◮ Note that, {u, v} is a basis of F (A) if and only if the
homomorphism ϕ : F (c , d) → F (a, b) given by ϕ(c) = u,
ϕ(d) = v is an isomorphism. So all the bases of F (A) have
cardinality 2. Extends to free groups of any rank.

◮ Question: let A be a r -letter alphabet and let
u1, · · · , ur ∈ F (A). How do we decide whether {u1, . . . , ur} is
a basis of F (A)?

Pascal Weil Algorithmic problem in free groups

Subgroups of a free group

◮ H, finitely generated subgroup of F (A)

◮ Theorem: Every subgroup of F (A) is free. Proof later

◮ Contrary to vector spaces: if H is a subgroup of F (A), the
rank of H may be greater than |A|.

◮ Example: in F (a, b), the set {biab−i | i ∈ Z} freely generates
a subgroup, or infinite (countable) rank. Proof later

◮ Problems: given g , g1, . . . , gn ∈ F (A), and H = 〈g1, . . . , gn〉,
◮ is g in H? (uniform membership problem)
◮ what is the rank of H? compute a basis for H

Pascal Weil Algorithmic problem in free groups

Stallings graph of a subgroup

◮ H = 〈g1, . . . , gn〉, finitely generated subgroup of F (A):
construct a labeled graph (automaton) characterizing H

◮ Example: 〈a2ba, baba−1, b−1aba−1, a3, b2〉

◮ Algorithm: write the gi as circuits around a common vertex v0

◮ fold

◮ It always stops

◮ It is confluent

◮ It depends on H only, not on the choice of g1, . . . , gn elements

of proof to come

Pascal Weil Algorithmic problem in free groups

The language of the Stallings graph of H

◮ Seen as an automaton with initial and accepting state v0: the
languages of the intermediate Γi (over alphabet Ã) grow; for
every u ∈ H, L(Γi) contains some v such that red(v) = u; if u
is accepted by one of the intermediate Γi , then red(u) is an
element of H; if u is reduced and in H, then u ∈ L(Γi) for
some i .

◮ So a reduced word is in H if and only if it is accepted by
L(Γ(H)) = solution of the uniform membership problem (in
polynomial time)

Pascal Weil Algorithmic problem in free groups

Applications: computation of a basis, intersection

◮ Is g1, . . . , gn a basis of F (A): compute Γ(H) and check
whether it is the bouquet of n length 1 loops (using
uniqueness)

◮ Basis of H: choose a spanning tree T of Γ(H), get a
generating set

◮ Theorem: This generating set freely generates H: H is free
and our generating set is a basis

◮ So we know the rank

◮ Compute the intersection of two subgroups

◮ Corollary: Howson (1954)

◮ Tricky but elementary:
rank(H ∩ K)− 1 ≤ 2(rank(H) − 1)(rank(K)− 1) (Hanna
Neumann, 1957)

◮ Difficult: rank(H ∩ K)− 1 ≤ (rank(H) − 1)(rank(K)− 1)
(Mineyev, and also Friedman, 2012)

Pascal Weil Algorithmic problem in free groups

Applications: conjugation, finite index

◮ If H is a subgroup of G and g ∈ G , g−1Hg is also a
subgroup, called a conjugate of H (written Hg)

◮ On example: Hg when g can be read, and when it cannot

◮ Characterization of finite index

◮ Nielsen-Schreier formula: if H has index n in F free of rank r ,
then rank(H)− 1 = (r − 1)n

◮ Decidability of the conjugacy problem

Pascal Weil Algorithmic problem in free groups

Thank you for your attention!

Pascal Weil Algorithmic problem in free groups

