Algorithmic problem in free groups

Pascal Weil (CNRS)

ISI, Sujata Ghosh's class, April 2024

Pascal Weil Algorithmic problem in free groups

イロト イヨト イヨト イヨト 二日

Freely reduced words

- A a (finite) alphabet (= non-empty set), A
 = {ā | a ∈ A} disjoint from A, A
 = A∪A. A^{*} = all words on A (free monoid on A). 1 is the empty word.
- Notation: $\overline{\overline{a}} = a$,
- Want to see ā as a (group) inverse of A: let ~ be the congruence on Ã* generated by aā ~ āa ~ 1. That is: if u, v ∈ Ã*, then u ~ v iff there exist u = u₀, u₁, ..., u_k = v such that, for each i, you go from u_i to u_{i+1} by deleting or inserting a factor aā (a ∈ Ã)
- Example
- ▶ *u* is *reduced* if it contains no factor $a\bar{a}$ ($a \in \tilde{A}$). Every word is \sim -equivalent to a reduced word (noetherian rewriting system $a\bar{a} \rightarrow 1$)
- confluent rewriting system = every ~-class contains a single reduced word. Sketch of proof

Free group

- F(A) = all reduced words. Multiplication: u ⋅ v = red(uv). This operation is associative (because ~ is a monoid congruence). Describe inverse. Thus F(A) is a group, called the free group on A.
- ► Alternate description: F(A) = Ã*/ ~ (monoid quotient, which turns out to be a group).
- If G is a group and φ: A → G is any map, then φ extends to a unique group homomorphism φ: F(A) → G
- What if I change alphabet? Is F(A) isomorphic to F(B)?
- Theorem: F(A) is isomorphic to F(B) if and only if |A| = |B|
- Sketch of proof: project *F*(*A*) to the group (ℤ/2ℤ)^A = ⊕_{a∈A}ℤ/2ℤa, by mapping a ∈ A and ā to a. Surjective. An isomorphism φ: *F*(A) → *F*(B) yields an isomorphism φ₂: (ℤ/2ℤ)^A → (ℤ/2ℤ)^B. Then linear algebra tells us that |A| = dim(ℤ/2ℤ)^A and |B| = dim(ℤ/2ℤ)^B are equal.

San

Rank and bases of a free group

- ▶ |A| is **not** called the dimension of F(A), it's called its *rank*
- ► and A is called a *basis* of F(A), because every element of F(A) can be written in a unique way as a reduced word on Ã
- Moreover, F(A) has many bases! Suppose $A = \{a, b\}$
- ▶ Then $\{a, b\}$ is a basis. Also $\{a^{-1}, b\}$, $\{ab, b\}$, $\{b^{-1}ab, b\}$, $\{b^{-1}ab^2, b^{-1}ab\}$, etc.
- ► Infinitely many bases, in fact: if {u, v} is a basis, so are {u⁻¹, v} and {uv, u}
- Note that, {u, v} is a basis of F(A) if and only if the homomorphism φ: F(c, d) → F(a, b) given by φ(c) = u, φ(d) = v is an isomorphism. So all the bases of F(A) have cardinality 2. Extends to free groups of any rank.
- ► Question: let A be a r-letter alphabet and let u₁, ..., u_r ∈ F(A). How do we decide whether {u₁,..., u_r} is a basis of F(A)?

- *H*, finitely generated subgroup of F(A)
- Theorem: Every subgroup of F(A) is free. *Proof later*
- Contrary to vector spaces: if H is a subgroup of F(A), the rank of H may be greater than |A|.
- Example: in F(a, b), the set {bⁱab⁻ⁱ | i ∈ ℤ} freely generates a subgroup, or infinite (countable) rank. Proof later
- ▶ Problems: given $g, g_1, \ldots, g_n \in F(A)$, and $H = \langle g_1, \ldots, g_n \rangle$,
 - ▶ is g in H? (uniform membership problem)
 - what is the rank of H? compute a basis for H

イロト イヨト イヨト 一日

200

- ► H = (g₁,..., g_n), finitely generated subgroup of F(A): construct a labeled graph (automaton) characterizing H
- Example: $\langle a^2 ba, baba^{-1}, b^{-1}aba^{-1}, a^3, b^2 \rangle$
- Algorithm: write the g_i as circuits around a common vertex v_0
- fold
- It always stops
- It is confluent
- It depends on H only, not on the choice of g₁,..., g_n elements of proof to come

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

- Seen as an automaton with initial and accepting state v_0 : the languages of the intermediate Γ_i (over alphabet \tilde{A}) grow; for every $u \in H$, $L(\Gamma_i)$ contains some v such that red(v) = u; if u is accepted by one of the intermediate Γ_i , then red(u) is an element of H; if u is reduced and in H, then $u \in L(\Gamma_i)$ for some i.
- So a reduced word is in H if and only if it is accepted by L(Γ(H)) = solution of the uniform membership problem (in polynomial time)

イロト イロト イヨト イヨト 三日

Applications: computation of a basis, intersection

- Is g₁,..., g_n a basis of F(A): compute Γ(H) and check whether it is the bouquet of n length 1 loops (using uniqueness)
- Basis of H: choose a spanning tree T of Γ(H), get a generating set
- ► Theorem: This generating set freely generates *H*: *H* is free and our generating set is a basis
- So we know the rank
- Compute the intersection of two subgroups
- ► Corollary: Howson (1954)
- Tricky but elementary: rank(H ∩ K) − 1 ≤ 2(rank(H) − 1)(rank(K) − 1) (Hanna Neumann, 1957)
- ▶ Difficult: $rank(H \cap K) 1 \le (rank(H) 1)(rank(K) 1)$ (Mineyev, and also Friedman, 2012)

- If H is a subgroup of G and g ∈ G, g⁻¹Hg is also a subgroup, called a *conjugate* of H (written H^g)
- On example: H^g when g can be read, and when it cannot
- Characterization of finite index
- ▶ Nielsen-Schreier formula: if *H* has index *n* in *F* free of rank *r*, then rank(H) 1 = (r 1)n
- Decidability of the conjugacy problem

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Thank you for your attention!

Pascal Weil Algorithmic problem in free groups

イロト 不良 とうほう 不良 とうほう

590