LECTURE 10
16.02 .2024

Fir at Is romopplisem Theorem
Let G and G^{\prime} be two groups and $f: G \rightarrow G^{\prime}$ be an epimorphises. Then, there is an is omophersm between G/kus and C'.
Proof: Let $H=\operatorname{Ker} 5$ Define

$$
h: G / H \rightarrow G^{\prime}: a H \longmapsto f(a)
$$

We would liter to show that h is an iso morphism.

$$
\begin{aligned}
-h(a H * b H) & =h(a b H) \\
& =f(a b) \\
& =f(a) f(b) \\
& =h(a H) h(b H)
\end{aligned}
$$

Thus, in is a homomorphism.

- h is sujuctive

Let $g^{\prime} \in G^{\prime}$. Then, there is $g \in G$, st. $f(g)=g^{\prime}$. Thus, $h(g H)=g^{\prime}$
Hence, h is sur $f e c t i v e$.

- h is infective

Suppose, a H, b $H \in G / H$, set

$$
\begin{array}{ll}
& \operatorname{h}(a H)=\operatorname{h}(b H) \\
\Rightarrow & f(a)-f(b) \\
\Rightarrow & f(a)(f(b))^{-1}=e_{G^{\prime}} \\
\Rightarrow & f\left(a b^{-1}\right)=\tau_{G^{\prime}} \\
\Rightarrow & a b^{-1} \in H \\
\Rightarrow & a H=b H \quad(\text { Check!) }
\end{array}
$$

This completes the proof
Mare on quotient groups
Let G be a group and H be a normal subgroup of G. Consider the quotient group of H in $G, G / H$ $=(\{a H: a \in G\}, *)$, where $\{a H: a \in G\}$ denotes the set of all cosits in G

Now, what about the subgroups of
G/H? How do they look like?

- Take any subgroup K of G s.t $G \supseteq K \supseteq H$. Since H is a normal subgroup of G, M is a normal subgroup of K as will. Considu $K / H=\{a H: a \in K\}$. Now, the claim is K / M is a group undue the operation * given by $a H * b H=a b H$ for all $a, b \in K$: - If $a, b \in K, a \in K$. Thus, if $a H, b H \in$ K / H, then $a b H \in K / H$ So, $a H * b H \in K / H$. - * is associative in K / H
- H is the identity clement
$-(\omega H)^{-1}=a^{-1} H \in K / M$, whenever $a H \in K / H /$ (if $a \in K$, then $a^{-1} \in K$)
So, K / H is a sulagoonf of G / H, whenever K is H subgos of of G contain ing H.

Q- If yow take any subgroup C^{\prime} of G/re, will it always be of the form K / H for some sublyoup K if G containing H?
Consider the quotient group G/M and let G^{\prime} be a subgroup of G / M
Then, $G^{\prime}=\{a H: a \in G\} \subseteq G / H$
Is $G^{\prime}=K / M$ for some K with $G \supseteq K \supseteq H$?
Take $K=\left\{a \in G: a H \in G^{\prime}\right\} \subseteq G$.

- Now, $K \supseteq H$ as for any $h \in H$,

$$
h H=H \in G^{\prime} .
$$

- if $a \in K, b \in K$, then $a b \in K$
- the operation in K is associative as $K \subseteq G$
- $r_{\text {}} \in K$ as,$H \in G^{\prime}$
- Take, any $a \in K$. Then, $a^{-1} \in K$,

Thus, K is a subgroup of G contain ing H and $G^{\prime}=K / H$
Thus any subgroup of G / H is of the form K / H, where K is a sabgoop of G containing H

Products of grouper
$\operatorname{Let}\left(G_{1}, *_{1}\right)$ and $\left(G_{2}, *_{2}\right)$ be two groups. Consider the set $G_{1} \times G_{2}$ Define a binary operation * on $G_{1} \times G_{2}$, given by

$$
\begin{aligned}
& \left(g_{1}, g_{2}\right) *\left(g_{1}^{\prime}, g_{2}^{\prime}\right)=\left(g_{1}^{*}, g_{1}^{\prime}, g_{2} * 2 g_{2}^{\prime}\right), \\
& \text { for all }\left(g_{2}, g_{2}\right),\left(g_{1}^{\prime}, g_{2}^{\prime}\right) \in G_{1} \times G_{2}
\end{aligned}
$$

Q. $\operatorname{Does}\left(G_{1} \times G_{2}, *\right)$ form a group? A. - is associature (Check !)

- $\left(c_{G_{0}}, e_{G_{2}}\right)$ is the identity dement (check)
- for any $(a, b) \in G_{1} \times G_{2}$, inverse of (a, b), that is, $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$ Yes, it does, and this group is called the product of the groups G_{1} and G_{2}.
H.W. Show that the following are homomophons.
(1) $f_{1}: G_{1} \rightarrow G_{1} \times G_{2}: g_{1} \mapsto\left(g_{1}, \tau_{G_{2}}\right)$
(2) $f_{2}: G_{2} \rightarrow G_{1} \times G_{2}: g_{2} \mapsto\left(e_{G_{1}}, g_{2}\right)$
(3) $f_{3}: G_{1} \times G_{2} \rightarrow G_{1}:\left(g_{1}, g_{2}\right) \mapsto g_{1}$
(4) $f_{4}: G_{1} \times G_{2} \rightarrow G_{2}:\left(g_{1}, g_{2}\right) \mapsto g_{2}$

Product of arlogoups
Let C be a group. Can we find sulgorefs H and K. of G such that $H \times K$ is
isomorplize to G ?
Examples

$$
\text { 1. } \begin{aligned}
G & =\left\{r, u, a^{2}, a^{3}\right\} \\
H & =\left\{e, a^{2}\right\}
\end{aligned}
$$

Then, H is a subgroup of G. Is G isomorphic is $H \times H$?

NO (why?)

$$
\text { 2. } \begin{aligned}
G & =\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}\right\} \\
H & =\{e, b\} \\
K & =\left\{e, c, c^{2}\right\}
\end{aligned}
$$

Is G is omonplic to $H \times K$?
Define $f: G \rightarrow H \times K$ by,

$$
a^{i} \longmapsto\left(b^{i}, c^{i}\right)
$$

f is an is omoopliss m. (Cluck!)
there, one can identify H and K to be subgroups of G (why?) Thus, G is is omorphice to thu" product $M \times K$, where M and K ane subgroups of G
Conjecture: If C is a cyclic grout of order n, say, where $n=p q$, with p and q are primes with $p \neq q$, then G is isomorplice to $M \times K$ where H is a cycle group of order p
and K is us cyclic group of adm V
H.W. Prove this conjecture

Nos, let us generalise this idea to consider any group, not just cycle soups
Let G be a group and H and K be subgroups of G. What conditions can or impose on H and K such that G is isomophire to $H \times K$?
Let us first thy to define a map $f: H \times K \rightarrow G$. A natural mab can be of the form: $f(h, k)=h k$. Now, can be show that this map is an isomophisur? Lit's see!

- Is f a homomorphism?

To chow: $\left.f\left(\left(h_{1}, k_{1}\right) \cdot\left(h_{2}, k_{2}\right)\right)=f\left(\left(h_{1}, k_{1}\right)\right) \cdot f\left(h_{2}, k_{2}\right)\right)$

$$
\begin{aligned}
& \text { L.H.S }=f\left(\left(h_{1} h_{2}, k_{1} k_{2}\right)\right)=h_{1} h_{2} k_{1} k_{2} \\
& \text { R.H.S }=h_{1} k_{1} \cdot h_{2} k_{2}=h_{1} k_{1} h_{2} k_{2} .
\end{aligned}
$$

Io make them equal we need to show that $h k=k h$ fr all $h \in H, k \in K$.

Under what conditions on H and K can we show \#?
Now, $h k=k h$ would imply $h k h^{-1} \in K$ and $k^{-1} h k \in H \ldots$.. So, a natural assumption that we can enforce on H ard K is that H and K are normal subgroups of G
Assumption 1: $H \Delta G$ and $K \Delta G$ But, this would not suffice as then we might have: $h k=k^{\prime} h$ for some $k^{\prime} \in K$, not necessarily k. So, what more do we mud? Let us look into (\#) $h k=k h$, which would imply that $h k h^{-1} k^{-1}=e$. So, let us look into
$h k h^{-1} k^{-1}$. Since H and K are nounal subgroups, $h k h^{-1} k^{-1} \in H \cap K$. So, if we assume $H \cap K=\{e\}$, we will get (\#) for all $h \in H, k \in K$
A sumption 2:HคK $2:\{r\}$
Now, with assumptions (1) and (2), be have that f is a homomaplisin

- Let us now lin to show that f is injucture :

$$
\begin{aligned}
& f\left(\left(h_{1}, k_{1}\right)\right)=f\left(\left(h_{2}, k_{2}\right)\right) \\
\Rightarrow & h_{1} k_{1}=h_{2} k_{2} \\
\Rightarrow & k_{1}=h_{1}^{-1} h_{2} k_{2} \\
\Rightarrow & k_{1}=h_{3} k_{2} \\
\Rightarrow & k_{1} k_{2}^{-1}=h_{3} \in H
\end{aligned}
$$

But, $k_{1} k_{2}^{-1} \in K$ So, $k_{1} k_{2}^{-1} \in H \cap K$
Hence, $k_{1} k_{2}^{-1}=e$, that is $k_{1}=k_{2}$
Similarly, $h_{1}=h_{2}$ So, $\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right)$

- Finally, we have lo show that f is amjuctive
Let $g \in G$. We have to find $h \in M$ and $k \in k$, s.t. $f((h, k))=g$, that is $h_{k}=g$. So, we need to show that any $g \in G$ is of the form he, fo some $h \in H$ and $k \in K$. The following assumption would guarantee this
Assumption (3): $G=H K$
Thus, we have the following theorem?
Theoum: Let G be a group and H and K be subgroups of G. If
(1) $H \triangleleft G$ and $K \Delta G$,
(2) $H \cap K=\{e\}$, and,
(3) $G=H K$
then, G is isomaplic to $H \times K$.

