Polynomial ringo
Let uss first consider polynomial ring cohere the underling sing is a field, F, say.
Conniidur $F[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right.$

$$
\left.a_{i} \in F \text { for all } i, x \geqslant 0\right\}
$$

We have: ($F[a], t, \cdot)$ forms a sing.
What about the ideals in this ring?
Let us introduce the concept of momic polynomials

- A manic polynomial is a polynomial where the coefficient of the highest pour is 1

Of corse, any Polynomial over a field can
br reduced to a manic polynomial
An example

$$
\begin{aligned}
& f(x)=x^{3}+2 x^{2}+3 x+7 \\
& g(x)=x^{2}+x+1
\end{aligned}
$$

So, $\operatorname{deg} g<\operatorname{dig} f$. Then them exist polynomials $q(x)$ and $r(x)$, s.t.

$$
f(x)=g(x) \cdot q(x)+r(x) \text {, with } d g r<\operatorname{deg} g \text {. }
$$

Q. If we teak $q(x)=x$, would this result be satisfied ? NO (Check!)
Q. If we tale $q(x)=x+1$, would this result br satisfied? $Y \in S$ (Check !)

Result: Given any two polynomials f and g over a field F with dey $g \leqslant \operatorname{dy} T$, there unit polynomials $q(x)$ and $r(x)$, s.t.

$$
f(x)=g(x) \cdot v(x)+r(x) \text { with lug } r<\operatorname{deg} g \text {. }
$$

Theorem. Every ideal $\{0\} \neq I \subseteq F[x]$ is a principal ideal generated by a movie polynomial f in I of minimal degree
Proof. We hare I $\neq\{0]$. Let $f(x) \in I$ be a manic polynomial of minimal degree Now, consicler any $h(x) \in I$. So, we have

$$
\begin{aligned}
& \qquad h(x)=f(x) \cdot q(x)+r(x) \text {, with } \\
& \text { deg } r<\operatorname{deg} f . \\
& \text { Then, } r(x)=h(x)-f(x) \cdot q(x) \in I .
\end{aligned}
$$

Thus, $r(x) \in I$ and $\operatorname{deg} r<\operatorname{deg} f$
So, $r(x)=0 \quad$ (why ?). Then:
$h(x)=q(x) \cdot f(x)$. So, I is generated by $f(x)$, that is, $I=(f(x))$. This completes the proof.

Let us now ling to provide another proof of the Frunderamental Theorem of Algebra.

Fundamental Theorem of Algebra:
Any polynomial of degree n has at most in rook.

Proof. Let. F be a field and $F[x]$ be the polynomial ring oven F. Tate any
$E E F$. We can define $h: F[x] \rightarrow F$

$$
f(x) \longmapsto f(e)
$$

Q. Is ln a homomorphism?

$$
\begin{aligned}
-h\left(f_{1}(x)+f_{2}(x)\right) & =f_{1}(c)+f_{2}(c) \\
& =h\left(f_{1}(x)\right)+h\left(f_{2}(x)\right) \\
h\left(f_{1}(x) \cdot f_{2}(x)\right) & =f_{1}(c) \cdot f_{2}(c) \\
& =h\left(f_{1}(x)\right) \cdot h\left(f_{2}(x)\right) .
\end{aligned}
$$

Q. What is the bunch of h ?

$$
\operatorname{Ken} h=\{f(x) \in F[x]: f(c)=0\}
$$

We have that Kush forms an ideal of $F[2]$, and thus Kerch is a principal dial generated by a monic polynomial of minimal degree

Let us consider $x-c$, a move polynomial We have: $x-c \in \operatorname{Kerh}$ and so. $\operatorname{Kur} h=(x-c)$. Take any $f(x) \in$ Kenh. So, $f(c)=0$. Now $f(x)=(x-c) \cdot g(x)$, where $g(x) \in F[x]$. Now, sup pose $f(x)$, is of degree n. Tee $g(a)$ is of degree $n-1$. So, by applying induction we can say that a polynomial of degree n has at most n roots. This completes the proof. Note: The 'field' assumption is necessary Consider the polynomial $x^{2}-1$ over $\pi / 8 \not Z$ It is a polynomial of degue 2 , however, the roots are [1], [3], [5] and [7], then is, it has 4 roots in $\pi / 8 Z$

