Lecture 16
More an quotient ringo
Let R be a sing and I be an ideal of R. The quotient ring is then given by $R / I=\{r+I: r \in R\}$. Also, there is a natural mat $f: R \rightarrow R / I: r \mapsto r+I$ What are the ideals of $R / I 2$

Let us consider the following two sets

$$
\begin{aligned}
& A=\{J: J \text { is an ideal of } R \text { containing } I\} \\
& B=\{K / I: K / I \text { is an ideal of } R / I\}
\end{aligned}
$$

Claim: There is a one-one correspondence between these tiv sets, A and B.

Proof idea (1) from A to B Take any $J \in A$. Define $F(J)=\{(C): j \in J\}$

Of course $F(J) \subseteq R / I$ Let's see whether
$F(J)$ forms an ideal of R / I
(i) $F(J)$ forms a sulgrout of $R /[$ under addition

- Let $a^{\prime}, b^{\prime} \in F(J)$. Then there are
$a, b \in J$ s.t. $f(a)=a^{\prime}$ and $f(b)=b^{\prime}$
Then, $a^{\prime}+b^{\prime}=f(a)+f(b)=f(a+b)$
Since $a+b \in J, \quad a^{\prime}+b^{\prime} \in F(J)$
Associativity follows from the associativily of t in the ring R
- Identity element is I (check 1)
tureesse of $a^{\prime}=f(a)=a+I$ is $-a+I$ (As, $-a$ is in J for all $a \in J, J$ being an ideal of R)
(ii) Take any $r+I \in R / I$ and $a+I \in F(J)$. To show that $(r+I) \cdot(a+I) \in F(\bar{F})$ that is, $r \cdot a+I \in F(J)$.
Since, $a+I \in F(J), a \in J$ and so $r \cdot a \in J$, so $r \cdot a+I \in F(J)$.
Thus, $F(J)$ forms ans ideal of R / I.
(2) From B lo A

Let J^{\prime} be an ideal of R / I. We need to find an ideal J of R containing I, cot. $J^{\prime}=J / I$. Let us define J as follows: $J=\left\{j: j+I \in J^{\prime}\right\}$, that

$$
\text { in, } J=f^{-1}\left(J^{\prime}\right)=\left\{a \in R: f(a) \in J^{\prime}\right\}
$$

(i) Does J coutim I?

Take any a $\in I$. To show that $a \in J$, that is $f(a) \in J^{\prime}$. Now, $f(a)=a+I=I$ Now, I is the zero element of R / I and J^{\prime} is an ideal of R / I. So, $I \in J^{\prime}$. Then, $f(a) \in J^{\prime}$ and so, $a \in f^{-1}\left(J^{\prime}\right)=J$ Hence, $I \subseteq J$
(2) J is an ideal of R
T.P.(i) J is a subgroup of R under addition
(ii) Take $r \in \mathbb{R}, a \in J$. Then $r, a \in J$.

Proof is done in the

This gus us the ore-one correpondunce between A and B.

An applicati on of this cornish ondence Let R be ring and I be an ideal of R. We have the quotient $\operatorname{sing} R / I$. We also have a suijective homomophusin frow R bo R / I. Similarly, we have a surjictive homomorplisin from R / I to $R / I / J /[$, where J is an ideal of R containing I. Consider

Let $g=f^{\prime} \circ f$. Then g gives a sunjective
homomorphism from R to $R / I / J / I$
Then we have : $R / I / \mathrm{J} / \mathrm{I}$
$R /$ Keg
What is Keng 2
H.W. Chuck that $\mathrm{Ken} g=J$

We then have

We happens if a quotient ring R / I is a field (another application) 2 Suppose R / I is a field. Then it has only two ideals I and R / I. It follows that three is no proper ideal J of R pt. $I \subseteq J \subseteq R$. Such an ideal
is said to be a maximal ideal of R, Also, it follows that if I is a maximal ideal of R, then the only possible ideals of R / I are I and R / I Then R/I forms a field. Thus we here proved the following the rem:
Theormin: Let R be a sing and I be an ideal of R. Then R / I is a fiend iff I is a maximal ideal of R -

Adjoining elements to a ing.
Let R be a ring and let α be some element On target is to find a sing R^{\prime}, say which contains R and α and is the smallest such ring Consider $R^{\prime}=R[\alpha]$.

$$
\begin{aligned}
& =\left\{r_{0}+r_{1} \alpha+r_{2} \alpha^{2}+\cdots+r_{n} \alpha^{n} \vdots\right. \\
& \left.\quad r_{i} \in R \text { for each } i, n \geqslant 0\right\}
\end{aligned}
$$

H.W. Check that $R[\alpha]$ forms a ring and it is the swale at ing containing R and α

Examples

1. if $\alpha \in R$, then $R[\alpha]=R$
2. if α is not a not of any polynomial oven R, then $R[\alpha] \cong R[x]$
3 . if α is a root of a monic polynomial of minimal degree, x, say oven R then what can we say about $R[\alpha]$?

We claim that:

$$
\begin{array}{r}
R[\alpha]=\left\{r_{0}+r_{1} \alpha+r_{2} \alpha^{2}+\cdots+r_{n-1} \alpha^{n-1}: r_{i} \in R\right. \\
\text { fr all } i, 0 \leqslant i \leqslant n-1\} .
\end{array}
$$

This is tree because: for some polynomial $f(x)$ over R, we have $f(\alpha)=0$, that is, $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n-1} \alpha^{n-1}+\alpha^{n}=0$

So, $\alpha^{n}=-\left(a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n-1} \alpha^{n-1}\right)$
Thus we have $R[\alpha]$ as above In particular we have

$$
R[\alpha] \cong R^{n} \text { (as abelian groups). }
$$

Example:

- $R=\mathbb{Z}, \alpha=i$, consider thu monic polynomial $x^{2}+1$ over \mathbb{Z}
So, $\mathbb{Z}[i]=\left\{z_{0}+z_{1} i: z_{0}, z_{1} \in \mathbb{Z}\right\}$

$$
\cong \mathbb{Z}^{2} \text { (as abelian groups). }
$$

Back to $R[\alpha]$

Contimising our discussion on $R[\alpha]$ whir α is a root of a monic poly. mial of minimal degree n, say, we can consider the ideal generated by $f(x),(f(x))$. Now, any $h(x) \in R[x]$
can be written as $h(x)=q(x) \cdot f(x)$ $+r(n)$, where degree $(r)<\operatorname{deg} u(f)$ So, we can consider the quotient $\operatorname{ring} R[x] /(x)) \cong R[\alpha]$ (as ringo).
H.W. (i) Show $R[\alpha] \cong R^{n}$ (as abelian groups)
(ii) Show $R[x] /(x(x)) \cong R[\alpha]$ (as sings)
[α is a root of the manic polynomial $f(x)$, say, of minimal degrees n, say.]

Example (contiming)
i is a root of the morn polynomial $x^{2}+1$ over Z.

