Lecture 17
How to constinct fields containing p^{2} elements, for any prime number p ?

Before getting in to this let us introduce the conecfot of in educible polynomials, which we would use below:

- A polynomial $f(x)$ over a sing R is said io be ineducibb if $f(x)$ cannot be expressed as a product, $g(x) \cdot h(x)$ of polynomials $g(x)$ and $h(x)$ whose degrees are $\geqslant 1$.

Example

$$
\begin{equation*}
R=z / 3 z: \quad f(x)=x^{2}-2=[1] \cdot x^{2}- \tag{2}
\end{equation*}
$$

Does $f(x)$ have any soot in R? NO $\left[[0]^{2}=[0],[1]^{2}=[1],[2]^{2}=[1]\right]$

So, $f(x)$ is irreducible over R as $f(x)$ cannot be expressed as the product of $g(x)$ and $h(x)$ with degus $\geqslant 1$.
Let α be some coot of $f(x)$. Then,

$$
\begin{aligned}
Z / 3 Z[\alpha] & \cong z / 3 z[x] \\
& \left.\cong z / x^{2}, 2\right) \\
& \cong z / 3 z+z / 3 z^{\alpha} \\
& \cong(z / 3 z)^{2} \quad[\text { as abeliem groups }]
\end{aligned}
$$

So, $Z / 3 Z[2]$ contains q elem ents We have started off from a field Z/3Z containing 3 elements and using an in educible polynomial oven $Z / 3 Z$, we have come up with a ring structure $z / 3[\alpha]$ containing
$3^{2}=9$ elements. If we can prove that $Z / 3 Z[\alpha]$ is a field, we get a field containing $3^{2}=$ a elements. To achive this, let us prove the following lemma
Lemma Let F be a field. Then, $F[x] /(x))$ is a field ifs $f(x)$ is inducible over F. Proof Let $F^{\prime}=F[x] /(f(x))$ we have, the follow wing:

$$
F^{\prime} \text { is a field }
$$

iff F^{\prime} has only two deal $\left\{O_{F}\right\}$ and F^{\prime} iff $F[x]$ has only two ideals containing $(f(x)),(f(x))$ and $F[x] \cdot(\text { why? })^{0}$

If $(f(x))$ is a maximal ideal of $F[x]$ If there is no other $g(x)$ in $F[x]$ s.t. $g(x)$ divides $f(x)$ (why?) if $f(x)$ is inseducible over F.

So, we have constinceded a field cont ain ing $3^{2}=9$ elements, $z / 3 \not z[x]$

$$
\left(x^{2}-2\right)
$$

Lit vo now generalize this idea to consing fields of order p^{2}, fo any prime p

- We consider the field $Z / p z$ and try to find irreducible folly nomials of segue 2 over z / p
Let us first consider $Z / 2 Z$

Consider $f(x)=x^{2}-1$. Then, $f(x)=(x-1)(x+1)$, so, $f(x)$ will not waft
But consider $f(x)=x^{2}+x+1$, it is inducible over $Z / 2 Z$
So, the required field having $2^{2}=4$ Cement is $\frac{\left.Z / 27[x] / x^{2}+x+1\right)}{(2)}$

Let us consider prunes $p>2$.
Consider the polynomial $f(x)=x^{2}-b$ and a prime $p>2$. Now, $f(x)$ will be inducible in $Z / p z$ if b is not a square in Z / p. So, if we can ensure the existence of such a b in $z / p, p>2$, we are done. We prove the following lemma.

Lemma. Let b be a prime number >2. Then, there exists $b \in Z / p z$, such that b is not a square.

Proof. Consider a function

$$
\begin{aligned}
& f: z / p_{p} \vee\{[0]\} \rightarrow z / p z \backslash\{[0]\} \\
& f(q)=g^{2} \quad \text { Now, } \\
& \begin{aligned}
f\left(q_{1} \cdot g_{2}\right)= & \left(q_{1} \cdot g_{2}\right)^{2} \\
= & g_{1}^{2} \cdot g_{2}^{2} \\
& =f\left(g_{1}\right) \cdot f\left(g_{2}\right)
\end{aligned}
\end{aligned}
$$

So, f is a group homoworflusm on

$$
Z / p \neq\{[0]\}
$$

It is enough to show that f is not a sujuecture map. We kino that in this case, f 's sinjuctive if
f is injucture if $\operatorname{ker} f=\{[1]\}$. So, if we can show that $\mathrm{Ku} f \neq\{[1]\}$, we we done
Now, $\operatorname{Ker} f=\left\{[a] \in Z / p \backslash\{(0)]: a^{2}=1(\bmod p)\right\}$
We have, $a^{2} \equiv 1(\bmod p)$
inf $p \mid a^{2}-1$
if $p \mid(a+1)(a-1)$
if $p \mid(a+1)$ a $p \mid(a-1)$
if $a \equiv-1(\bmod p) \quad a, a \equiv 1(\bmod p)$
Thus, $\mathrm{Kent}=\{[1],[-1]\}$
Hence, $\operatorname{Ku} f \neq\{[1]\}$.
So, f io not surjective
This completes the proof.

Thus, we have a way to constrict fields having p^{2} elements for every prime p

Prime fields
A field F is sand to be prune if F has no proper subfield

Example

$$
7 / 2 z
$$

Lemma Consider any field F. Then,
(a) if F has characteristic 0 , then F contains a subfield K s.t. $K \cong Q$
(b) if F has character is tic $p>0$, then F contains a subfield K s. $t \cdot K \cong Z / Z$

Proof Let $f: Z \rightarrow F$ defined by

$$
f(n)=\underbrace{1+1 \cdots+1}_{n}
$$

fr all $x \in Z, 1$ being the miltipheiction identity of F. We have that, f is a homomorphism
(a) Supper the character istur of F is O.

Then $\operatorname{ker} f=\{0\}$. So, f is infective.
Define $f^{*}: \varphi \rightarrow F$ by

$$
f^{*}(a / b)=f(a)[f(b)]^{-1} \text { for all } a_{b} \in \varphi \text {. }
$$

$$
\begin{aligned}
& \text { 1. Is } f^{*} \text { infective ? } \\
& f^{*}(a / b)=f^{*}(c / d) \\
& \Rightarrow f(a)[f(b)]^{-1}=f(c)[f(d)]^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow f(a) f(d) & =f(b) f(c) \\
\Rightarrow \quad f(a d) & =f(b c) . \\
\Rightarrow a d & =b c \\
\Rightarrow a / b & =c / d
\end{aligned}
$$

So, f^{*} is injecture

$$
\text { 2. Is } f^{*} \text { a haomomaphinsw? } \quad \begin{aligned}
f^{*}(a / b+c / d) & =f^{*}\left(\frac{a d+b c}{b d}\right) \\
& =f(a d+b c)[f(b d)]^{-1} \\
& =(f(a) f(b)+f(b) f(c))[f(b)])(a))^{-1} \\
& \left.=f(a)[f(b)]^{-1}+f(c) f(d)\right]^{-1} \\
& =f^{*}\left((/ b)+f^{*}(c / d)\right.
\end{aligned}
$$

$$
\begin{aligned}
-f^{*}(a / b \cdot c / d) & =f^{*}\left(\frac{n c}{b d}\right) \\
& =f(a c)[f(b d)]^{-1} \\
& =f(a) f(c)[f(b)]^{-1}[f(d))^{-1} \\
& =f(a)\left[f(b)^{-1} f(c)[f(d)]^{-1}\right. \\
& =f^{*}(a / b) \cdot f^{*}(c / d) .
\end{aligned}
$$

Then, we hove that f^{*} is an injeetur homo marphism from Q to F So, $Q \cong \operatorname{Simage}\left(f^{*}\right)$ But Invage $\left(f^{*}\right)$ is a subfield of F and we have our K s. t. $F \supseteq K \cong Q$. This completes the proof.

