LECTURE 19
Proposition: If F / K is a finite field essension, then every element of F is algebraic oven K

Proof: Let $[F: k]=n \quad$ Take any $c \in F$ Io show that c is algueraic over K Case I. $C=0$. On required polynomial is x
Case II. $C=1$. A required polynomial is x - 1

Case III. $C \neq 0,1$, Let us consider the set $\left\{1, c, c^{2}, \ldots, c^{n}\right\}$
(a) Not all of them are distinct Then there exist j, l, say, such that $c^{j}=c^{l}, \quad 0 \leq j<l \leq n \cdot S_{0}, e^{l-j}=1$, and om sequined polynomial can be given by $x^{x-j}-1$
(b) All of them are distinct Then $\left\{1, c, c^{2}, \cdots c^{n}\right\}$ forms a linearly dependent set. (Why?). Then, there exist $k_{0}, k_{1}, k_{2} \cdots, k_{n} \in K$, not all zero, such that $k_{0}+k_{1} c+k_{2} c^{2}+\cdots+k_{n} c^{n}=0$, which gives us om repined polynomial
This completes the proof
Problem: Show that $x^{2}-7$ is inneducitle in $Q(\sqrt{3})[x]$
Solution. Suppose not Then,

$$
\begin{gathered}
x^{2}-7=(x-(a+b \sqrt{3}))(x-(c+d \sqrt{3})) \text {, where, } \\
a, b, c, d \in Q
\end{gathered}
$$

Then, $x^{2}-7=x^{2}-((a+c)+(b+d) \sqrt{3}) x$

$$
+(a c+3 b d+(a d+b c) \sqrt{3})
$$

So : $(a+c)+(b+d) \sqrt{3}=0$

$$
\text { and, } a c+3 b+(a d+b c) \sqrt{3}=-7
$$

Now, $\{1, \sqrt{3}\}$ forms a basis rover \mathcal{P} fr the field extinsion $Q(\sqrt{3}) / Q$

We have: $a+c=0, a, a=-c$

$$
\text { and } b+d=0, a \quad b=-d
$$

So, $\left(-a^{2}-3 b^{2}\right)+(-2 a b) \sqrt{3}=-7$
Similarly, we have

$$
-a^{2}-3 b^{2}=-7 \text { and }-2 a b=0
$$

But ten, $a=0$ or, $b=0$
Case I. $a=0$. Then $3 b^{2}=7$ But $b \in Q$
Then, $b=\frac{p}{V}$, where p, q are integers, $q \neq 0$ and p and q are relaturly prime to each other. Then, $3 p^{2}=7 q^{2}$, a contradiction So this case is not possible.
Case II. $b=0$. Then $a^{2}=7$, a contradiccion. So, this cause is also not possible.

Hence, $x^{2}-7$ is inducible in $g(\sqrt{3})[x]$ This completes the solution

Inténediate Field
Let F / K be a field extension. A subfield L of F is called an intermediate field of F / K if $K \subseteq L \subseteq F$. We note that L is also a subspace of F over K
H.W Let F / K be a field extin sion and L be an intermediate field. Show that

$$
[F: K]=[F: L][L: K]
$$

Example
$Q(\sqrt{2}, \sqrt{3}) /$ Consider the intermediate full $\theta(\sqrt{2})$ \mathbb{Q} where $Q \subseteq Q(\sqrt{2}) \subseteq Q(\sqrt{2}, \sqrt{3})$ Then, we have the field extensions
$Q(\sqrt{2}) /$ and $Q(\sqrt{2}, \sqrt{3}) /$
Now,
$x^{2}-2$ is the minimal polynomial of $\sqrt{2}$ over $日, x^{2}-3$ is the minimal polynomial of $\sqrt{3}$ oven $g(\sqrt{2})$. Thus, $[Q(\sqrt{2}): Q]=2$ and $[\varphi(\sqrt{2}, \sqrt{3}): \varphi(\sqrt{2})]=2$, and finally, following the given homework above,

$$
\begin{aligned}
& {[Q(\sqrt{2}, \sqrt{3}): Q]=2 \cdot 2=4, \text { with basis }} \\
& \{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}
\end{aligned}
$$

Proposition Let F / K be a field extension. Let L be the set of all elements in F treat are algebraic over K. Then, L is a intermediate field of F / K

Proof Of come, $L \subseteq F$. Let us now
show that $K \subseteq L$ Take $k \in K$. Then $x-k$ is the required polynomial showing that k is algebraic sore K. So, $k \in L$, and hence $K \subseteq L$. So, $K \subseteq L \subseteq F$. It remains to be shown that L is a field. Take $a, b \in L$ with $b \neq 0$. It is enough to show that $a-b \in L$ and $a b^{-1} \in L$ Let m be the deque of the nominal polynomial of a over K and n be the same for b over K. Consider the field intensions $K(a) / K$ and $K(a, b) / K(a)$
Now, $[K(a): K]=m$
and $[K(a, b): K(a)] \leqslant n \quad($ why ? $)$.
Thus, $[K(a, b): K]$ is finite
So, unary element of $K(a, b)$ is algebraic over K, Since $K(a, b)$ forms
a field, and $a, b \in K(a, b)$, $a-b$, $a b^{-1} \in K(a, b)$. So, $a-b$ and $a b^{-1}$ are algebraic over K, and hence. $a-b, a l^{-1} \in L$. Thus L form a field. This completes the proof.

We will now cousidn the existence of such field extensions which ane generated by sots of polynomials. First, we will study the following result stich gives a positive answer regarding existence of roots of any polynomial over a field
Theoum Let K be a field and let $f(x)$ $\frac{b e}{}$ a nou-constant porbpromial in. $K[x]$. Then, there exists a field extension F / K such that F contains a not of $f(x)$.
Proof. Without loss of generality we cons assume that $f(x)$ is inciducible in
$K[x]$. (why ?) Then $K[x] /(f(x))$ forms
a field Take $F=\frac{K[x]}{(f(t))}$. we

need to show the following
(i) K can be embedded in F, that is, there is un injecture tionomophisen fromK into F
(ii) F contains a coot of $f(x)$

Proof of (i)
Consider the natural homomophusur, $\alpha: K[x] \rightarrow K[x] /(f(x)) \quad g(x) \mapsto g(x)+(f(x))$
Jo, $K \subseteq K[x]$ And, $K \cap(f(x))=\{0\}$. Consider $a, b \in K$ ot. $\alpha(a)=\alpha(b)$. So, $a+(f(x))=b+(f(x))$, implies, $a-b \in(f(x))$ implies $a-b=0$, as $a-b \in k$ So, $a=b$, and hence $\left.\alpha\right|_{k}$ is infective

Then, $k \cong \operatorname{Im}(\alpha \mid k) \subseteq F$. So, we can say that F / K is a field intension
Proof of (ii)
To show that $f(2)$ has a not in $F=K[x]$
Now, $\alpha(f(x))=O_{F}$
Abs, $\alpha(f(x))=f(x)+(f(x))$

$$
\begin{aligned}
& =f(x+(f(x))) \\
& =f(\alpha(x))
\end{aligned}
$$

So, $f(\alpha(x))=O_{F}$
Hence, $\alpha(x)$ is a \cot of $f(x)$ in F This completes the proof

