LECTURE 2
Different types of functions
In what follows, unless otherwise stated, by a function we will mean unary function
Let A and B be tiro nou-emply sits and $f: A \rightarrow B$.

1. f is infective: for all $x, y \in A$ $f(x)=f(y)$ implies $x=y$.
Example $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto x+2$

$$
f: A \rightarrow A: x \longmapsto x
$$

2. I is surjector for all $b \in B$, there is some $a \in A$ such that $f(a)=b$
Examples: same as above
3. f is bijective: infer tue and sirjecture

Counting the sumter of elements in a set
Finite set : A set A is said to be finite if A is imply or there is a bijection $f: A \rightarrow$ In, for some $x \in \mathbb{N}$, where $I_{n}=\{1,2,3, \ldots, n\}$

Infinite set: A set A is said bo be infinite if it is not finite

IN (the set of natural numbers) is an infinite set: Prove this by using $P_{0} I:(H \cdot W)$

Let us now have a detailed look at PoI.
$\underline{\text { Primifle of Induction (POI) }}$

Let $S \subseteq I N$ such that the following holds: (i) $0 \in S$
(ii) if $n \in S$, then $x+1 \in S$

Then, $S=\mathbb{N}$
Now, how to prove PoI? Let us first introduce Wellorderng principle for the set of natural number
Wll-rdering Principle (Wop)
Any now emily subset of IN has w least element.

Theoum PoI if WOP
Proof. Let us assume PoI. Io prove WOP. Suppose WOP does not hold. So, there is a nou-umply subset S
of \mathbb{N}, which does not have a lest elematit. Lit us consider $P(n)$ to be the property In all number $i=0,1,2, \ldots, n, i \notin S$ Wow, $0 £ S$. So, $P(0)$ holds
Assume $P(k)$ holds fer $k \in \mathbb{N}$
Then, $P(k+1)$ holds (Check!)
Then, by PoI, $P(n)$ holds on all n
Then, S is empty, a contradiction Hence, the result, that is Wo P holds. This completes the proof

Touvisily, suppose WOP hals We have to prove $P_{0} I$. Take $S \subseteq \mathbb{N}$ satifying the conditions: (i) $0 \in S$ and (ii) $n \in S$ implies $x+1 \in S$. To prove $S=\mathbb{N}$. Suppose not. Then, $\mathbb{N} \backslash S \neq \Phi$ Them, WOP tels no that $\mathbb{N} \backslash, S$ has a least element, k, say. Now, $k \neq 0$
as, $o \in S$. Then, $k-1 \in \mathbb{N}$. Then, $k-1 € \mathbb{N} \backslash S$, as k is the least element of $\mid N \backslash S$. So, $k-1 \in S$. But then, $(k-1)+1 \subset S$, that is, $k \in S$, a contradiction. Hence, we have $S=\mathbb{N}$. This complete the prof

Principle of Strong Induction (POSI).
Let $S \subseteq \mathbb{N}$ satisfying the following conditions
(i) $0 \in S$
(ii) if $k \in S$ for all $k \leqslant n$, then $n+1 \in S$. Then $S=\mathbb{N}$
H.W PoI if PoSI

How to write 'proof by induction
We prove the result by applying induction on n (what even that may be)

- Basis step: we prove the result for the least possible number that is relevant
tho the statement.
- Induction Hypotte cis: We assume that the statement holds for $n=k$
- Induction Step le prove that the statement hold for $n=k+1$

On in finite sets
Other examples of infinite sets \mathbb{Z} : the set of integer
\mathscr{Q} : the set of rationals \mathbb{R} : Mite set of reals

Che now have examples of finite sets and infinite sets Now, let us ask the following questions: 1. How to duscibe the notion of - number of elements' in an set when it is infinite?
2. Can we distinguish loo infinite sets in, terms of the number of client' feresent in those sets? Let no now by g to answer lies questions A discussion on cardinality of sets. Two sets A and B are said to be equipolent if the is a bijection between A and B
hel' us bifuns a relation R on the collection of sets given as follows' $A R B$ if A and B are equipotint.
H.W. R is an equivalence relation

Let us now mention some concepts based on equivalence relations. If R is an exvivalinec relation on a set A,
define $[a]=\{b \in A: a R b\}$ pr any $a \in A$ We call $[a]$ los be the equivalina class of a in A with respect to R.
we have the following
(ii) $a \in[a]$, for all $a \in A$
$H^{W} \cdot\{$
(ii) Io r any $a, b \in A$, either $a R b, a$,

$$
[a] \cap[b]=\Phi
$$

Partitioning of a sot
A collection of subs sis $\left\{A_{i}: i \in I\right\}$ is said to partition a set A if:
(i) $\bigcup_{i \in I} A_{i}=A$ and (ii) po all $i, j \in I$, icj,

$$
A_{i} \cap A_{j}=\Phi
$$

Prove that any equivalue relation on A gives rise t a partition of A Prove that any partition of A gives rus to an equivalina relation on A :

