LECTURE 20
12.04 .2024

Splitting field
Let K be a field. A polynomial $f(x)$ in $K[x]$ is sand lo split over a field $S \supseteq K$ if $f(x)$ can be factored as a product of linear factors in $S[x]$

- A field S containing K is said to be a splitting field for $f(x)$ over K if $f(x)$ splits over S, but over no intermediate field of S / K

Example
(1) Consider the fields \mathbb{C} and \mathbb{R}, and the polynomial $x^{2}+1$ on $\mathbb{R} \cdot \mathbb{C}$ is a splitting field over \mathbb{R}

- $x^{2}+1$ splits aves C into $(x+i)(x-i)$
- Also, $[\mathbb{C}: \mathbb{R}]=2$ If there ∞ any such intermidiate bield,
thin $[\mathbb{C}: \mathbb{R}]=[\mathbb{C}: L][L: \mathbb{R}]$. S_{0}, $L=\mathbb{C} n, \mathbb{R}$.
(2) Consign the fields \mathbb{C} and Q, and the polynomial $x^{2}+1$ over $\mathbb{Q} \cdot \mathbb{C}$ is not a splitting field of $x^{2}+1$ oven Q, as $Q(i)$ is ane intermidi ate fiend over which $x^{2}+1$ splits.
H.W. Let K be field and $f(x) \in K[x]$. Let F / K be a field untinsion sot. $f(x)$ splits over F, that is,

$$
f(x)=c\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{x}\right)
$$

in F Then, $K\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ is a splitting field for $f(x)$ over K.
Let us now discuss about the ennistence and uniqueness if splitting fields

Proportion (Exislince): Let K be a fictile and $f(x)$ be a now cost ant polynomial over K. Then these exists a splitting field of $f(x)$ oven K
Proof idea: By induction on the degree of the polynomial $f(x)$.
Base Sep: Ley $f(x)=1$. Then the splitting field us K itself
A.S.S: $\frac{\text { I.H. }}{\text { Taker }} \operatorname{deg} f(x)=x+1 \quad f(x)$ has a sot C_{1} in sone field extension K / K.
Then, $f(r)=\left(x-c_{1}\right) f_{1}(x)$. Apply I.H. and complete the proof

Proposition (Uniqueness): Let K be a field and $f(x)$ be a non-constant polynomial over K. Show that any two splitting fields S and S^{\prime} of $f(x)$ are is oman place

Proof ven: we also prove this by applying induction on the degree of the polynomial $f(x)$
Bax Slip: $\operatorname{deg} f(x)=1$. Then $S=S^{\prime}=K$ Assume I.H.
IS.: $\operatorname{dog} f(x)=n+1$. Without loss of generalitíg, let us assume $f(x)$ lo be inseducible. Let c_{1} be a root of $f(x)$ in S and c_{1}^{\prime} be the same in S^{\prime} Then, $K\left[c_{1}\right]=K\left(c_{1}\right)$ and $K\left[c_{1}^{\prime}\right]=K\left(c_{1}^{1}\right)$. Define an is omoiphiusm $\alpha: K\left(c_{1}\right) \rightarrow K\left(c_{1}^{\prime}\right)$ $c_{1} \mapsto c_{1}^{\prime}$ and untied it los an iso. moppivsin from S to S^{\prime} using induction dyypottisins. This would complete the proof

Example
Consider $\mathbb{Q}[x]$ and consider the polynomial $x^{4}-3$.

- First we would show that $x^{4}-3$ is in seducible over Q. We would use
Bis enstern Criteria
[Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \cdot+a_{4} x^{x}$
be a polynomial with integer coefficients. Let there be a prime number p st.: (i) $p X a_{n}$,
(ii) $p \mid a_{i}, i=0,1, \cdots, n-1$ and, (iii) $p^{2} \times a_{0}$

Then the polynomial is in reducible over \mathbb{Q}.
Thus, we have that $x^{4}-3$ us irreduciter over $\mathbb{P}(p=3)$.

Then we have a field $F=Q[x] /(3,3)$
which has a root of $x^{4}-3$, namely, $x+\left(x^{4}-3\right)=\lambda_{1}$, say
Then, we can write the following:

$$
\left.\underset{\left(x x^{4}-3\right)}{\left(x-\mathbb{P}\left(\lambda_{1}\right)=\left\{a+b \lambda_{1}+c \lambda_{1}^{2}+d \lambda_{1}^{3}\right.\right.} \begin{array}{l}
a, b, c, d \in Q
\end{array}\right\}
$$

Indued, $\left\{1, \lambda_{1}, \lambda_{1}^{2}, \lambda_{1}^{3}\right\}$ forms a basis of $Q\left(\lambda_{1}\right)$ over $Q\left(\right.$ as, $x^{4}-3$ forms the minimal polynomial of λ_{1} over Q)
So, $x^{4}-3=\left(x-\lambda_{1}\right) g(x)$.
Repeating the same argument, we would finally have $Q\left(\lambda_{1}\right)\left(\lambda_{2}\right)\left(\lambda_{3}\right)\left(\lambda_{4}\right)$ $=Q\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$, with

$$
x^{4}-3=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)\left(x-\lambda_{4}\right)
$$

Without doss of generality we can say, $\lambda_{2}=-\lambda_{1}$ and $\lambda_{4}=-\lambda_{3}$
Now, it we conarden the polynomial $x^{4}-3$ in $Q\left(\lambda_{1}\right)$, be can write,

$$
\begin{aligned}
x^{4}-3 & =\left(x^{2}-\lambda_{1}^{2}\right)\left(x^{2}+\lambda_{1}^{2}\right) \\
& =\left(x-\lambda_{1}\right)\left(x+\lambda_{1}\right)\left(x^{2}+\lambda_{1}^{2}\right)
\end{aligned}
$$

Wee have: $\left(x^{2}+\lambda_{1}^{2}\right)$ is irreducible oven $\Theta\left(\lambda_{1}\right)$ (Check!). And considering $\overline{\lambda_{0}} t_{0}$ be a coot of $x^{2}+\lambda_{1}^{2}$ ave $\varphi\left(\lambda_{1}\right)$ wo howe $\left[g\left(\lambda_{1}, \lambda_{3}\right): \varphi\left(\lambda_{1}\right)\right]=2$

Also, $\left[Q\left(\lambda_{0}\right): Q\right]=4$
So,

$$
\begin{aligned}
{\left[Q\left(\lambda_{1}, \lambda_{3}\right): Q\right] } & =\left[Q\left(\lambda_{1}, \lambda_{3}\right): \varphi\left(\lambda_{1}\right)\right]\left[Q\left(\lambda_{1}\right): \varphi\right] \\
& =4: 2=8
\end{aligned}
$$

