Lecture 21
16.04.2024

A brit overview on finite fields
We will basically prove an existences result and a virqueness result for finite fields
Theorem (Existence): Let p be a pome number and n be a positive inligir. Then there exists a field extension F / Z_{p} of degue n
Proof: Consider the polynomial $f(x)=x^{b^{n}}-x$ over Z_{p}. Let s be a splitting field of $f(x)$. Let a be a not of $f(x)$ in S.
Then, $f(x)=(x-a)^{m} g(x)$, where $m \geqslant 1$ and a is not a root of $g(x)$. Let us consider $f^{\prime}(x)$
from $f(x)=x^{b^{n}}-x, f^{\prime}(x)=-1$ (Check!)
From $f(x)=(x-a)^{m} g(x), \quad f^{\prime}(x)=$

$$
(x-a)^{m-1}\left[m g(x)+(x-a) g^{\prime}(x)\right]
$$

Then, we have that $m-1=0$, ie, $m=1$.
This means that all the roots of $f(x)$ are distinct, that is, $f(x)$
 F be the set of all these roots If we can show that F is a field, we are done. Let $a, b \in F$, with $b \neq 0$
(i) We show that $a-b \in F$

Now, $(a-b)^{b^{n}}=a^{b^{n}}-b^{b^{n}}=a-b$. So, $a-b \in F$.
(ii) We show that $a b^{-1} \in F$

$$
\text { Now, }\left(a b^{-1}\right)^{p^{n}}=a^{b^{n}}\left(b^{b^{n}}\right)^{-1}=a b_{0}^{-1} \text {. So, } a b^{-1} \in F \text {. }
$$

Thus $F=S$ and also, we have

$$
\left[F: Z_{p}\right]=n \quad(\text { Check! })
$$

This completes the proof.
Theorem (Uniqueness) Any thurs finite fields containing p^{n} elements are isomorphic, where p is a prime nubble and x is a positive insider
Proof: Consider the polynomial $x^{6^{\prime \prime}}-x$ our Z_{p}. Take any field F of characteristic p containing p^{n} elements We consider the algebraic stindéne $(F \backslash\{0\}$, .). Itisa commutative group of order $b^{n}-1$. Then, for all $a \in F\{\{0\}$, $a^{p^{n}-1}=l$. So, $a^{b^{n}}=a$. Also, $0^{b^{n}}=0$ Hence, F contains all sots of $x^{b^{n}}-x$, and be nee contains a splitting field

set of coots of $x^{b^{n}}-x$. Thus, $F=S$
So, we have that any field of characteristic p containing b_{n}^{n} elements is a spolitting field of $x^{r^{n}}-x$. Thus, any two such fuels are is omouplic.
This completes the proof
Example
Consider the field \mathbb{Z}_{2} and consider the polynomial $f(x)=x^{3}+x+1 \in Z_{2}[x]$ $f(x)$ is irreducible in $Z_{2}[x]$
Then, we can consider the field $F=Z_{2}[x] /\left(x^{3} x^{x^{1}}\right)=Z_{2}\left(\lambda_{1}\right)$, when e,
λ_{1} is a sot of $x^{3}+x+1$ in F. $x+\left(x^{3}+x+1\right)$

$$
\begin{aligned}
& \mathcal{Z}_{2}\left(\lambda_{1}\right)=\mathcal{Z}_{2}\left[\lambda_{1}\right]=\left\{0,1, \lambda_{1}, \lambda_{1}^{2}, 1+\lambda_{1},\right. \\
& \left.1+\lambda_{1}^{2}, \lambda_{1}+\lambda_{1}^{2}, 1+\lambda_{1}+\lambda_{1}^{2}\right\}
\end{aligned}
$$

H.W. Write the addition table for $Z_{2}\left(\lambda_{1}\right)$.
H.W. Considining $x^{3}+x+1=\left(x+\lambda_{1}\right) g(x)$ find the roots of $g(x)$, say λ_{2} and λ_{3}, and show that $Z_{2}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=Z_{2}\left(\lambda_{1}\right)$, that is, $Z_{2}\left(\lambda_{1}\right)$ is a splitting field of the polynomial $x^{3}+x^{2}+1$ oven Z_{2}
H.W. Do the same study for the polynomial $x^{3}+x^{2}+1$ aver \mathbb{Z}_{2}

