Lecture 3

Wee will continue ow r discussi on on 'cardinality of sets.

From what we dis cussed last time. of have an equivalucce relation on the collection of set. giving us a partition of the collection.

Q. $\frac{\text { Do IN and } \mathbb{Z} \text { belong to the }}{\text { same collection? yes }}$ Similar questions would cure w.r. to \mathbb{Z} and \mathbb{P}, \mathbb{P} and \mathbb{R} cud others. the will get to this later. For now, we say that two sets hour the sane candinatily if these is a bijection between bern

Countable sets
A set X is said to be countable if there is a bijection between \mathbb{N} and X -
$\underline{\text { Uncountable sets }}$
A set X is said to be uncountable if it is not finite and not computable

Examples of countable sits

1. IN is countable
2. Infinite subsets of \mathbb{N} Io show this lit us prove a more general result:
Proposition: Tape any countable set A. Let E be an infinite subset of A. Then, E is also countable. Proof Let A be u commutable set.
and $E S \inf A$. Let us arrange (emmerate/list) the elements of A iv ar sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of distinct elements
$x_{1} x_{2} x_{3} \cdots \cdots x_{n}$
Let is now construct another sequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ as follows Let n_{1} be the smallest positive integer such that $x_{n_{1}} \in E$. Let n_{2} be the smallest positive integer greater than n_{1} st. $x_{n_{2}} \in E$. Gwen $n_{1}, n_{2}, \ldots, n_{k}$, let n_{k+1} be the smallest positive integer greater than n_{k}, with $x_{n_{k+1}} \in E$.
Now, define a map $f: \mathbb{N} \rightarrow E$ by $f(k)=x_{n_{k}}$. This gives us the sequined bijection. This completer the proof.
Note In some since, countable sets represent the "smallest infinity".
3. Z is a countable set

$$
\begin{aligned}
& \begin{array}{lll}
-4-3 & -1 & \text { No } 22
\end{array} \\
& f: \mathbb{Z} \rightarrow \mathbb{N}: \\
& f(0)=0 \\
& f(-n)=2 n \\
& f(n)=2 n-1
\end{aligned}
$$

f gives a bijection between \mathbb{Z} and \mathbb{N}.
4. Q is a countable set

This is a bit nose complicated.
Let us consider \mathbb{Y}^{+}first, the $^{+}$ set of all positive rational numbers

$\theta^{+}=\left\{\frac{p}{q}: p\right.$ and q are prime to each oltren 3
Then, there coil - not be any problem as all members are distinct.

Another way to deal with such listing is as follows: We collet all the similar represuriations in the same equivalence dass. Then. we consider the set of these equivalence classes and provide a bijution. Io example: Io the positive national numbers, $\frac{a}{b} \sim \frac{c}{d}$ if $a d=b c$. Now, $\mathbb{Q}=Q^{+} \cup Q^{-} \cup\{0\}$ Then, we can proor Q to be countable if we prove the following.
H.W. (1) is commit able
(2) Union comb of a finite set and a countable.

