Lecture 4

- Union of finitely many countable sets is countable
Proof idea: It follows by induction using H-W. (1) above..
Union of countably many countable site is also countable.
Proof idea: Ret $\left\{A_{n}: u \in \mathbb{N}\right\}$ be a countable collection of countable sets. Let $A=\bigcup_{n \in \mathbb{N}} A_{n}$. To show, that A is commutable. Let A_{n}^{\prime} 's be pairwise disjoint.
Now, we have that each A_{n} is cometrable. Then, each An can be written as : $\left\{a_{n 1}, a_{n 2}, a_{n 3}, \cdots\right\}$ that is, $A_{n}=\left\{a_{n k}\right\}_{k \in \mathbb{N} \text {. Then we }}$ bee the following arrangement for the members of A :

This enumeration gives a bijection beluiein \mathbb{N} and A. So A is count table

Products of counlatie sets

- Let A and B be two countable sets. Then, $A \times B$ is countable
Proof idea: $A=\left\{a_{1}, a_{2}, \ldots.\right\}$

$$
B_{n}=\left\{b_{1}, b_{2}, \ldots .\right\}
$$

Then, one can think of the following

$$
\begin{array}{lll}
\left(a_{1}, b_{1}\right) & \left(a_{1}, b_{2}\right) & \left(a_{1}, b_{3}\right) \\
\left(a_{1}, b_{1}\right) & \left(a_{2}, b_{2}\right) & \left(a_{2}, b_{3}\right.
\end{array}
$$

- Let $A_{1}, A_{2}, \ldots A_{n}$ be n countable sets, when $n \geqslant 1$. Then $A_{1} \times A_{2} \times \cdots \times A_{n}$ is also computable

Proof idea: The proof follows from the previous result using induction.

- Let A_{1}, A_{2}, \ldots be a conn táble collection of countable sits. Then what can we say about $\prod_{n \in \mathbb{N}} A_{n}$; that is countable product of convitale sets?

Let us consider the set $A=\{0,1\}$. Let $B=\prod_{n \in \mathbb{N}} A_{n}$, where $A_{n}=A$ for all n. Is B countable? NO

Proof. Suppose B is countable
Then $B=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots\right\} \cdot$ Now, each by is a sequence of O^{\prime} and I_{0}^{\prime}. Then, $b_{i}=\left(b_{i 1}, b_{i_{2}}, b_{i_{3}}, \ldots.\right)$, where
$b_{i j} \in\{0,1\}$ for all $j \in \mathbb{N}$ Let c be a sequence of O_{ρ}^{\prime} and I_{1}^{\prime} defined as follows:

$$
\begin{aligned}
c_{i}= & 0 \text { if } b_{i i}=1 \\
& 1 \text { if } b_{i i}=0, \quad i \in \mathbb{N}
\end{aligned}
$$

Then, $c \neq b_{i}$ for any $i \in \mathbb{N}$. Thus, $C \notin B$, a contradictor Hence, our assumption that B is countable cannot be true. Hence, B is uncountable. This completes the proof
What went on in this proof?

$$
\begin{aligned}
& b_{1}=b_{11} b_{12} b_{13} b_{14}- \\
& b_{2}=b_{21} b_{22} b_{23} b_{24} \\
& b_{3}=b_{31} b_{32} b_{33} b_{34} \\
& -=- \\
& b_{i}=b_{i 1} b_{i 2} b_{i 3} b_{i 4}
\end{aligned}
$$

Yo constinit' c, we comsidued ' bi's. This is what is famously known as 'diagonalization argument'.
H.W. \mathbb{R} is unconntirble

Some nobeti ans
When we have $\prod_{n \in \mathbb{N}} A_{n}$, where $A_{n}=A$ for all n; we denote $\prod_{n \in \mathbb{N}} A_{n}$ by $A^{\mathbb{N}}$; any tuple over A which is countable in size can be represented by a function $f: \mathbb{N} \rightarrow A$. $[X$ denotes the set of all functions from $Y t_{s} X$.]

Iris not only holds for IN, but for any indexing set I. For example, if we consider the collection $\left\{A_{i}: i \in I\right\}, A_{i}=A$ for all $i \in I, \prod_{i \in I} A_{i}$ is also given by A^{I}

$$
\left\{\begin{array}{l}
2^{\mathbb{N}} \text { is uncountable }(2=\{0,1\}) \\
\mathbb{R} \text { is uncounlatble }
\end{array}\right.
$$

H.W Prove that there is a bilection betoken $2^{\mathbb{N}}$ and \mathbb{R}
How many 'infinities' do we have?

- Countable sets (cam be represented

$$
\text { by } \mathbb{N})
$$

- Uncountable sets (do all uncountable sets have bifuction belüer reach otter?
NO

Some definitions

- Lit a be any set. We denote the cardinality of A by $|A|$: Tor example, we have $|\mathbb{N}|$ denoting the curdivalily of \mathbb{N} and similarly, we have $|\mathbb{R}|$ Let $|\mathbb{N}|=N_{0}$, and let $|\mathbb{R}|=c \quad\left[\right.$ we have $\left.2^{j r_{0}}=c\right]$
- If this e is an infection prom a set A to a set B, then we
denotuit by: $|A| \leqslant|B|$. And, $<$ denote the strict order.

Sehiöder-Bernation Theorem: Lit A and B be two sole such that there is an infection from A to B and an injection prow B to s A. Then, there is a bijution belären A and B. Finally, Cantor showed us that, - there are infinitely many infinities.

Let A be any set. Then $|A|<|B(A)|$ Proof: We have an injection from A to $P(A)$ given by $f: A \rightarrow \delta(A)$: $a \longmapsto\{a\}$. It is enough to show That there compost be a surjection from A to $\varnothing(A)$. Suppose not? Then, let $g: A \rightarrow 8(A)$ be a surjection

Let us consider the following set:

$$
\begin{aligned}
& B=\{b \in A \mid b \notin g(b)\} \text {. Thu, } \\
& B \subseteq A, \text { so } B \in \delta(A) \text { Now, N, }
\end{aligned}
$$

g is suijuctive. So, there is $a \in A$, such that $g(a)=B$
Don $a \in g(a)$ or, $a \notin g(a)$?
Suppose $a \in g(a)=B$. Then: $a \notin g(a)$.
Suppose $a \notin g(a)=B$. Then: $a \in g(a)$.
So, or arrive at a contradiction Hence, our original assumption about the existince of a surjection is not time Thus, there cannot be a sungiction from A lo $8(A)$ So, $|A|<|\varnothing(A)|$. This completes the proof

