LECTURE 8
We would like to find a map $f: G \rightarrow$ Ant G ret. $\operatorname{Ken} f=Z(G)$.
Note that for any $j \in \overline{G, f(g)}$ is a member of Ant G, then is, a map from G to G, which is an isomoptusm How to define $f(g)$?
Define $f(\gamma): G \rightarrow G$ as follows:

$$
f(g)(h)=g h g^{-1}
$$

Claim : $f(g) \in$ Ant G
To parve this claim, we show
(1) $f(g)\left(h \cdot h^{\prime}\right)=f(g)(h) \cdot f(g)\left(h^{\prime}\right)$
(2) $f(g)$ is a bijection

$$
\begin{aligned}
\text { Proof of (i) } & =f(g)\left(h \cdot h^{2}\right) \\
& =g\left(h \cdot h^{2}\right) g^{-1} \\
& =(g h)\left(h^{1} g^{-1}\right) \\
& =(g h)\left(g^{-1} g\right)\left(h^{\prime} g^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(g h g^{-1}\right)\left(g h^{\prime} g^{-1}\right) \\
& =f(g)(h) \cdot f(g)\left(h^{\prime}\right)
\end{aligned}
$$

Proof of (2): $-f(g)$ is an injection Let $h_{1}, h_{2} \in G$ s.t. $f(q)\left(h_{1}\right)=f(g)\left(h_{2}\right)$.
Then, $g h_{1} g^{-1}=g h_{2} g^{-1} \Rightarrow h_{1}=h_{2}$

- $f(\gamma)$ is sunjective

Take any $g^{\prime} \in G_{1}$. To find $h \in G$ st. $f(g)(h)=g^{\prime} \quad a_{2}, g h g^{-1}=g^{\prime}$

$$
a, \quad h=g^{-1} g^{\prime} g
$$

Thus: $f(g) \in$ Ant G

$$
\text { Now, } \begin{aligned}
\text { ken } f & =\{g \in G: f(g) \text { is the iduntitymap }\} \\
& =\{g \in G: f(g)(h)=h \text { fa all } h \in G\} \\
& =\left\{g \in G: g h g^{-1}=h \text { for all } h \in G\right\} \\
& =\{g \in G: g h=h z \text { for all } h \in G\} \\
& =Z(G)
\end{aligned}
$$

Maps and equivalence relations.
Let S and T be two non empty sets: Let $f: S \rightarrow T$. Define a binary relation \sim on S given by $a \sim b$ if $f(a)=f(b)$ for very a, b in S. Them it can be shown that \sim is an equivaluce relation

What more can we say when these maps are group homomorplisins?
Let G and G^{\prime} be twos groups and $f: G \rightarrow C$ be a homom orphism Now, let us consider $\operatorname{Ker} f=H$, say. Also, let K be the set of all equivalence classes induced by the map f We have $H \in J \alpha$.
Proposition: Any member of K is of the form $a H=\{a h: h \in H\}, a \in G$.

Proof: Take any $a \in G$. We kneed to show that if $b \sim a$, then $b \in a H$ and if $b \in a H$ then $b \sim a$, for any $b \in G$.

- Suppose $a \sim b$. Then: $f(a)=f(b)$
that is, $(f(a))^{-1} f(b)=e_{G^{\prime}}$, that is,
$f\left(a^{-1} b\right)=e_{G^{\prime}}$, that is, $a^{-1} b \in H$, that in,
$a^{-1} b=h$ for somme h in H. Thus, $b=a h \in a H$
- Suppose $b \in a H$. Then, $b=$ ah for some
$h \in H$. Then, $f(b)=f(a h)=f(a) \cdot f(h)=f(a) \cdot c_{G}$, $=f(c)$. Hence, $b \sim a$.
This complete the prof
Proposition: For any $a \in G, H$ and att have the same cardinality, that is, there enesco a bijection between H and aH
Proof. Let no refine $g: H \rightarrow a H$ by : $g(h)=a h$. We first shoo that g is ar injection. Let $h_{1}, h_{2} \in M$.
Now, $g\left(h_{1}\right)=g\left(h_{2}\right)$
$\Rightarrow a h_{1}=a h_{\varepsilon}$

$$
\Rightarrow \quad h_{1}=h_{2}
$$

We now show that $o f$ is a surjection Take any $b \in a H$. Then, $b=a h$ for some $h \in H$. So, we have $g(h)=a h=b$ This completes the proof

Corollary If G is a finite grout, then, $|G|=|\operatorname{Ker} f| \cdot|\operatorname{Image}(f)|$

An application of this conollany Consider $S G_{n}$ and $A G_{n}$. we have $\left|S G_{n}\right|=n$!
Consider $g: S G_{n} \rightarrow\{1,-1\}(v i a \operatorname{GL}(\mathbb{R}))$

$$
\operatorname{ken} g=A G_{n}
$$

So, $\left|S G_{n}\right|=\left|A G_{n}\right| \cdot 2$.

$$
\text { i.e. }\left|A G_{n}\right|=\frac{n 1}{2}
$$

Now, we would generalize this discussion tort respect to any subgroup.

Covets.
Let G be a group and H be a subgroup of G A lift coset of H in G is a set $\{a h: h \in H\}$ for some $a \in G$ We denote this set by a H. A right coset of H in G is a set [ha:h $H H$ \} for some a $\in G$. We dende this set by Ha_{a}
In what follows, we will denote left covets' as 'costs, unless otterurse specified.

We have seen that by cousidhing the subgroup $\operatorname{Ker} f$ corresponding to a homomorphism of with domain 6 , we found a partition of G in lime of coset of $\mathrm{Ke} f$ in G.

Can we get this re soult for any subgroup H of G ?
Proposition: Let K denote the set of all cosets of H in G. Then, G can be partitioned by members of k, that is
(1) $G=\bigcup_{a \in G} a H$
(2) for any $a H, b H \in K$, whether $a H E=b H$ or, $a H \cap b H=\Phi$
Proof: (1) Take any $g \in G$. To dhow that $g \in a H$ for nome $a \in G$. Now, $g \in g H$ and we are done.
(2) Taker any aH, b HEX If $\mathrm{aH}=$ bM, we are done. Suppose no st, that is $a H \neq b H$. We have to show that $a H \cap b H=\Phi$. Suppose not.

Let $c \in a H \cap \emptyset H$. Then $c \in a H$ and $c \in b H$. So, $c=a h_{1}=b h_{2}$ for some $h_{1}, h_{2} \in H$ Then, $a=b h_{2} h_{1}^{-1} \in b H$. So, $a H \subseteq b H$. Similarly, we can show that $b H \subseteq a M$. So, $a H=b H$, a contradiction. Hence, the proof is complete.

Thus, G can be partitioned by the coset of H in G, where H is a subgroup of G. Also, the cardinality of each such coset of H is the same as that of H
Let us denote the number of such costs of H in G to be the index of H in G, written as $[G: H]$ Corollary: It G is a finite group
then $|G|=|H| \cdot[G: H]$
This immediately tells us that fr a finite group G, and a subgroup H of G :
Lagrange's Theorem: The order of a subgroup of a finite grout G divides the order of G.
Applications of Kagrangis Theorem
(1) Let G be a finite group and let $g \in G$ Then, $O_{G}(g)| | G \mid$
Proof: Take $g \in G$. Consider $\langle g\rangle$, the cyclic subgroup of G generated by g; Now, by Lagrangis theorem, $|\langle g\rangle||G|$. But $|\langle g\rangle|=O_{G}(g)$. Hence, the result.

