LECTURE 9
(2) Let G be a finite goon of prime order. Then, G is a cyclic group. Proof. Let $|G|=p$, a prime number. So, there are mon-identity elements in G. Take any such element, g, say Consider the cyclic subgroup $\langle g\rangle$ generated by g. Then, by Lagrangis theorem $|\langle g\rangle| \mid G T$
So, $|\langle g\rangle|=1 \quad n, p$. Since $g \neq c_{G}$,
$|\langle q\rangle|=\mid$ Bant, $\langle q\rangle \subseteq G$ and, hence, $\langle g\rangle=G$. Thus, G is a cyclic group.
Q. Any group with prime p as its order is cyclic. What about any pouf p of order $p^{2} 2$ Not necessarily Consider the group of order 4:

$$
\left(\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\}\right.
$$

matrix multiplication), where all von-identety elements are of order 2 .

Some move examples of cosets Consider the group (\mathbb{Z}, t). We know that the sab groups are of the form $(n \mathbb{Z}, t)$, where $n \in \mathbb{Z}$
Q. What are the coset of $(5 Z, t)$?

$$
A \cdot\{0+5 \mathbb{Z}, 1+5 \mathbb{Z}, 2+5 \mathbb{Z}, 3+5 \mathbb{Z}, 4+5 \mathbb{Z}\}
$$

HeW. Prove the answer above, that is, show that the above collection of sets partitions \mathbb{Z}
Q. What are the cosets of $n \mathbb{Z}$ in $\mathbb{Z}, n \geqslant 1$? The collection of coacts of $n Z$ in Z is: $\{a+n Z: 0 \leq a \leq x-1\}$. [we can always ass mme that $x \geqslant 1]$.

Another way of writing this set is as follows: $\{[0],[1], \ldots,[n-1]\}$ We denote this set as \mathbb{Z}_{n} or $\mathbb{Z} / n Z$
Q. Does Z_{n} form a group under some operation?
Consider $[a],[b] \in \mathbb{Z}_{n}$.
Define $[a]+_{n}[b]=[a+b]$
$\begin{array}{ccc}\downarrow & \downarrow & \downarrow \\ \text { set } & \text { set } & \text { set } \\ \text { of } & \text { of } & \text { of } \\ \text { integers integers integer }\end{array}$
Let us consider $n=5$. Then, we have

$$
[3]+5[4]=[7]=[2] \quad(\text { Why ? })
$$

I) answer this query we should consider the equivalence relation underlying these classes, which would give us different representative member of the same class.

Now, what is the equivalence relation ~lese for which $2 \sim 7$?
Let $a, b \in \mathbb{Z}$. We define $a \sim_{n} b$ if $[a]=[b]$ in \mathbb{Z}_{n} ifs $n \mid a-b$

Above, we have defined the operation t_{n} between such equivalence classes. In these cases, we need to check will-definedress of such operations.

We have defined $[a] \tan _{n}[b]=[a+b]$ Now, if $a \sim a^{\prime}$ and $b \sim b^{\prime}$, then we should have $a+b \sim a^{\prime}+b^{\prime}$
Proof Suppose $a \sim d^{\prime}$ and $b \sim b^{\prime}$ Then, $x \mid a-a^{\prime}$ and $n \mid b-b^{\prime}$ So, $n \mid\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)$
a, $n \mid(a+b)-\left(a^{\prime}+b^{\prime}\right)$
Hence, $a+b \sim a^{\prime}+b^{\prime}$. Tho,

- t_{n} is well-difined on \mathbb{Z}_{n}
- Is t_{n} associative?

$$
\begin{aligned}
& ([a]+[b])+[c] \\
= & {[a+b]+_{n}[c] } \\
= & {[(a+b)+c] } \\
= & {[a+(b+c)] } \\
= & {[a]+_{n}[b+c] } \\
= & {[a]+_{n}\left([b]+_{n}[c]\right) }
\end{aligned}
$$

- [0] is the identity element

$$
\begin{aligned}
& {[a] \tan _{n}[0]=[a+0]=[a]} \\
& {[0]+n[a]=[0+a]=[a]}
\end{aligned}
$$

- Luverse of $[a]$ is $[n-a]$

$$
\begin{aligned}
& {[a]+n[n-a]=[a+(n-a)]=[n]=[0]} \\
& {[n-a]+_{n}[a]=[(n-a)+a]=[n]=[0] .}
\end{aligned}
$$

So, Z_{n} forms a grout under t_{n}.

Anoctur operation on \mathbb{Z}_{n}
Define x_{n} on \mathbb{Z}_{n} as follows

$$
[a] x_{n}[b]=[a \cdot b]
$$

H.W. Does \mathbb{Z}_{n} form a group under this operation? If not, can you find a nontrivial subset of \mathbb{Z}_{n} which will form a grouts under x_{n} ?

Let G be a group and f be a housman phisim with domain G. Cousidu bee f.
Q. Does the cosets of Ru f in the group G form a group under certam operation?
Let $H=\operatorname{Ku} f$, a subgroup of G. Consider $\mathcal{J}=\{a H: a \in G\}$, the set of all costs of H in G.

Define $a H * b H=a b H$

- is well-difured

Take $a_{1}, a_{2}, b_{1}, b_{2} \in G$.
Let $a_{1}, a_{2} \in a H$, that is $a_{1} \sim a_{2}$.
and $b_{1}, b_{2} \in b H$, that is $b_{1} \sim b_{2}$
che reed to show that:
$a_{1} b_{1} \sim a_{2} b_{2}$, that is: $a_{1} b_{1}, a_{2} b_{2} \in a b H$
Now, $\quad a_{1}=a h_{1} \quad a_{2}=a h_{2}$

$$
\begin{aligned}
& b_{2}=b h_{3} \quad b_{2}=b h_{4} \\
& h_{1}, h_{2}, h_{3}, h_{4} \in H
\end{aligned}
$$

We have: $f\left(a, b_{1}\right)$

$$
\begin{aligned}
& =f\left(a h_{1} b h_{3}\right) \\
& =f(a) f\left(h_{1}\right) f(b) f\left(h_{3}\right) \\
& =f(a) f(b) \\
& =f(a) f\left(h_{2}\right) f(b) f\left(h_{4}\right) \\
& =f\left(a h_{2} \cdot b h_{4}\right) \\
& =f\left(a_{2} b_{2}\right)
\end{aligned}
$$

So, $a_{1} b_{1} \sim a_{2} b_{2}$, that is

$$
a_{1} b_{1} H=a_{2} b_{2} H
$$

[Hen: $a \sim b$ iff $f(a)=f(b)$]

* is associative

$$
\begin{aligned}
& (a H * b H) * c H \\
= & (a b) H * c M \\
= & (a b) e H \\
= & a(b c) H \\
= & a H *(b c) H \\
= & a H *(b H * e H)
\end{aligned}
$$

[It follows from associativity of the group opuation •, say, in G]

- H is the identity element
- Inverse of aH is $a^{-1} H$

Thus $(k, *)$ bars a group. we denote this group by G/kuf

We hove now seen that cosetss in \mathbb{Z} forms a group. Also, it we consider the subgroup to be kef fer some homomorphism f, costs of Kerf also form a group.
Q. Taker any group G and take any subgroup H of G Would the covets of H in G always form a group under the operation we considued earlier? If not, what condition should we impose on subgroups to make this operation on coset work 2

Maim: For this operation on costs to work, we have to consider normal subgroups.

A proof of the claims
Let G be a grouts and H be a subgroup of G which is not a normal subgroup. Then, there is a $g \in G$ and there is an $h \in H, s, t$. ohg ${ }^{-1} \notin H$. Now, we consider the cosets of M in G. and consider tho operation

$$
a M * b H=a b M \quad \text { for all } a, b \in G
$$

It we tile $b=a^{-1}$, we have

$$
a H * a^{-1} H=a a^{-1} H=c_{b} H=H
$$

Their, for any $h_{-1}, h_{2} \in M$, there

$$
b_{3} \in H, \text { sib, } a h_{1} a^{-1} h_{2}=h_{3} \in H
$$

Now, lake $a=g ; h_{1}=h ; h_{2}=e_{6} \ldots$ Then? $\mathrm{gh}^{-1} \in M$, a contradiction.
So, H has to be a normal subgroup. This completes the proof.

Quotient Group.
Let G he a group and H be a normal suregroup of 6 The group formed by the costs of H in G, denoted by $6 / \mathrm{H}$, is called a quotient group of H in G. The group operation is given by: $a H * b H=a b H$ fr all $a, b \in G$.

Examples
(1)

$$
\begin{aligned}
(\mathbb{Z} / n z,+n): & (a+n \mathbb{Z})+n(b+n \mathbb{Z}) \\
& =(a+b)+n \mathbb{Z}
\end{aligned}
$$

(2)

$$
\begin{aligned}
(G / K e n t) *): & (a \cdot \operatorname{Ken} f) *(b \cdot \operatorname{kus}) \\
= & (a \cdot b) \cdot \operatorname{Kuf} f
\end{aligned}
$$

