
Algebra, categories and more

Aranya Kumar Bal

Abstract

In this report, I shall exposit upon how some coincidences pave the way for a natural definition of a
category and related notions. Then I will show some applications of category theory to pure math, computer
science and maybe some more areas.

1 Introduction
The birth of category theory is in modern algebraic topology, and the theory was fully extended for the
needs of algebraic geometry. To even appreciate why the theory needed development takes a lot of time, so
in this report, I will try to give a flavour of category theory from a different perspective : generalization.
At one point, I will remark how this generalization actually captures almost all of mathematics in a sense.

The question of why category theory is still prevalent because it’s so general that not everyone can see the
appeal of it. But hopefully, I will be able to instill some amount of curiosity in you to get you interested in
the subject.

2 Some remarkable coincidences... or is it?
In this section, I shall provide clues as to what the general theory might look like; the clues come from
what we already know.

2.1 Sets
Consider Set to be the collection of all sets (whether this is a set itself is irrelevant here) and functions
between them. Then the following are true about them.

• Composition of functions is again a function.

• Composition of functions is associative.

• For any functions f1 : A → B and f2 : B → C, there is a function g : A → C, namely
g = f2 ◦ f1.

• For any set S, there is an identity function idS : S → S, that is, idB ◦f = f = f ◦ idA for any
function f : A → B.

2.2 Groups
Consider Grp to be the collection of all groups and group homomorphisms between them. Then the
following are true about them.

• Composition of group homomorphisms is again a group homomorphism.

• Composition of group homomorphisms is associative.

• For any group homomoprphisms f1 : G1 → G2 and f2 : G2 → G3, there is a group homomor-
phism g : G1 → G3, namely g = f2 ◦ f1.

• For any group G, there is an identity group homomorphism idG : G → G, that is, idG2 ◦f =
f = f ◦ idG1 for any group homomorphism f : G1 → G2.

1

2.3 Rings
Consider Ring to be the collection of all rings and ring homomorphisms between them. Then the following
are true about them.

• Composition of ring homomorphisms is again a ring homomorphism.

• Composition of ring homomorphisms is associative.

• For any ring homomoprphisms f1 : R1 → R2 and f2 : R2 → R3, there is a ring homomorphism
g : R1 → R3, namely g = f2 ◦ f1.

• For any ring R, there is an identity ring homomorphism idR : R → R, that is, idR2 ◦f = f =
f ◦ idR1 for any ring homomorphism f : R1 → R2.

2.4 Vector spaces over a field k

Consider Vectk to be the collection of all vector spaces over the field k and linear maps between them.
Then the following are true about them.

• Composition of linear maps is again a linear map.

• Composition of linear maps is associative.

• For any linear maps f1 : V1 → V2 and f2 : V2 → V3, there is a linear map g : V1 → V3, namely
g = f2 ◦ f1.

• For any vector space V , there is an identity linear map idR : R → R, that is, idR2 ◦f = f =
f ◦ idR1 for any linear map f : R1 → R2.

The above examples clearly shows that there is some common structure among algebraic structures. How
about other structures that are not algebraic?

2.5 Topological spaces
Definition 2.1 (Topological space). A topological space is a tuple (X, τ) where X is a set and τ is a
collection of subsets of X such that the following holds:

1. ∅ and X are in τ .

2. If A,B ∈ τ , then A ∩B ∈ τ .

3. For any indexing set I, if Ai ∈ τ for all i ∈ I, then
⋃

i∈I Ai ∈ τ

Example 2.1. (X, τ) with X = {0, 1} and τ = {φ, {0}, {0, 1}}
(R, τ) where τ contains the union of open intervals in R.

τ is called a topology on X, the sets in τ are called the open sets of X, and we just write X if the topology
understood.

Definition 2.2 (Continuous function). A function f : (X, τ1) → (Y, τ2) is said to be continuous if
U ∈ τ2 ⇒ f−1(U) ∈ τ1 where f−1 means the preimage.
In other words, a function is continuous if preimage of open sets is open.

Example 2.2. Consider the topological space (X,P(X)) and consider any other topological space (Y, τ).
Then any function f : (X,P(X)) → (Y, τ) is continuous.

The collection Top of topological space and continuous functions satisfies the following properties (as you
might have guessed by now):

2

• Composition of continuous maps is again a continuous map.

• Composition of continuous maps is associative.

• For any continuous maps f1 : X1 → X2 and f2 : X2 → X3, there is a linear map g : X1 → X3,
namely g = f2 ◦ f1.

• For any topological space X, there is an identity continuous map idX : X → X, that is,
idX2 ◦f = f = f ◦ idX1 for any continuous map f : X1 → X2.

One more example to show another such structure. This time, it’s in logic.

2.6 Propositions
Consider Prop to be the collection of propositions (in some system) and (equivalence classes of) proofs
between them. Then the following are true about them.

• Composition of proofs is again a proof.

• Composition of proofs is associative.

• For any proofs X1 ⊢ X2 and X2 ⊢ X3, there is a proof X1 ⊢ X3, simply by composing the two
proofs (almost all logic system have this inference rule). Logicians write this as

X ⊢ Y Y ⊢ Z
X ⊢ Z

• For any proposition X, there is a proof that proves X from X itself, namely X ⊢ X.

So in fact topological spaces and logic (to some extent) also follow a similar structure! These coincidences
are too good to be true... So why not take the properties we have been looking at as axioms for some
generalized structure?

3 Categories
Definition 3.1 (Category). A category C consists of the following data

• A collection of objects denoted by Ob(C)

• A collection of arrows, called morphisms between pairs of objects; x f−→ y means f is a morphism
from x to y. The collection of all morphisms from x to y is called the homset of x to y, denoted as
homC(x, y), and the collection of all the morhisms is denoted HomC .

• A composition rule : given x
f−→ y and y

g−→ z, there is a morphism x
g◦f−−→ z.

And we want these to satisfy some properties.

• Each object x has an identity morphism x
idx−−→ x which satisfies idy ◦f = f = f ◦ idx for any x

f−→ y.

• The composition is associative, that is, f ◦ (g ◦ h) = (f ◦ g) ◦ h whenever w
h−→ x

g−→ y
f−→ z.

Example 3.1. We will look at several examples. First a very simple one. Consider a category with only
one object and only one morphism. Obviously the morphism has to go from the objct to itself, and the
morphism can only be the identity morphism (by definition). So we can represent it as

x

idx

A slightly more non-trivial category is

w x y z
f

g◦f

g

h◦g

h

3

In fact, the above examples generalise a little with an easy proof.

Theorem 3.1. Given a directed graph G, the reflexive and transitive closure of G is a category with
the vertices as objects and edges as morphisms.

The proof is just a routine check of the conditions for being a category.

Also, from the discussion in the previous section, we have that Set,Grp,Ring,Vectk,Top,Prop are all
categories.

Some more categories include that of abelian groups and group homomorphisms between them (called
AbGrp), partially ordered sets and monotone functions (called Pos) etc.

Almost any structure you see in math, along with their respective structure-preserving maps probably
forms a category. So one should always be on the lookout!

3.1 Functors
The actual strength of category theory comes from the following:

Definition 3.2 (Covariant functor). Let C and D be two categories. Then F is called a covariant functor
between these two categories if it does the following:

• For any object A in Ob(C), it gives an object F (A) in Ob(D).

• For any morphism A
f−→ B in C, it gives a morphism F (A)

F (f)−−−→ F (B) in D such that following
diagram commutes

A B

F (A) F (B)

f

F F

F (f)

Example 3.2. Consider the functor F that maps Grp to Set. It takes in a group G and gives F (G), the
underlying set of the group. As for morphisms, F takes a group homomorphism and gives the underlying
function (that is, this functor essentially forgets the group structure.) One can verify that this is indeed a
functor.

A more interesting example is the homotopy and homology functors. They allow us to study topological
spaces by actually looking at groups.

Definition 3.3 (Contravariant functor). Let C and D be two categories. Then F is called a contravariant
functor between these two categories if it does the following:

• For any object A in Ob(C), it gives an object F (A) in Ob(D).

• For any morphism A
f−→ B in C, it gives a morphism F (B)

F (f)−−−→ F (A) in D such that following
diagram commutes

A B

F (A) F (B)

f

F F

F (f)

Note that the bottom arrow has now flipped. That’s the main difference between covariant and
contravariant functors.

Example 3.3. Consider the functor F that maps Vectk to Vectk. It takes in a vector space V and
outputs the dual vector space V ∗ = F (V). As for morphisms, it takes in a linear map f : V → W and
outputs the dual mapo F (f) := f∗ : W ∗ → V ∗ which acts as f∗(φ) = φ ◦ f .

One quickly verifies that this is a contravariant functor.

4

A more interesting example is that of cohomology functors. They again allow us to study topological
spaces using rings this time.

The above example of dual vector space is actually a special case of a more general functor. Given a
(small) category C, every object defines a function homC(−, X) : C → Set that takes an object Y and
returns the set hom(Y,X), and takes a morphism f : Y → Z and returns the function

f∗ : hom(Z,X) → hom(Y,X)

g 7→ g ◦ f

This is called the Hom-functor and it is a contravariant functor.

Functors allow us to relate different theories of math together. What can be done in one theory can be
borrowed or looked at differently in other theories by means of moving through functors. In fact, the
observant reader would have noticed that functors also look like morphisms of some sort, which prompts
the following definition.

Definition 3.4 (Category of categories). Consider the following structure where objects are small
categories1 and morphisms are functors between them. This forms a category called Cat.

There’s another fun category, but before that we need a definition.

Definition 3.5 (Natural transformation). Given two categories C and D and functors F,G from C to D, a
natural transformation α : F → G (denoted by the following diagram sometimes)

C D

F

G

α

is an assignment to every object X of C of a morphism αX : F (X) → G(X) in D such that for any
morphism f : X → Y in C, the following diagram commutes in D

F (X) F (Y)

G(X) G(Y)

F (f)

αX αY

G(f)

Here’s the category now.

Definition 3.6 (Functor category). Given categories C and D, the functor category is the category whose
collection of objects is the collection of all functors F : C → D and the morphisms are natural
transofrmations between these functors. This category is often written as DC .

Let me end this section with an open problem with extremely huge ramifications (pun intended) in number
theory, algebraic geometry and several other fields (including physics)

Conjecture 1 (categorical unramified geometric Langlands conjecture). For G a reductive group and
for Σ an algebraic curve, there are functors (two funtors in opposite directions, such that they are
inverses in a sense) between stable (1,∞)-categories of, on the one hand, D-modules on the moduli
stack of G-principal bundles on Σ, and, on the other hand, nilpotent ind-objects of quasi-coherent
sheaves on the LG-moduli stack of local systems on Σ

(Ind(OMod(LocLG(Σ))))NilpGlob
→ DMod(BunG(Σ))

for LG the Langlands dual group.

In 2024, the group of D. Arinkin, D. Beraldo, L. Chen, D. Gaitsgory, J. Faergeman, K. Lin, S. Raskin and
N. Rozenblyum has claimed a proof of the conjecture.

1Okay, so the word small category has come up twice now, so it deserves an explanation. A category is called small if it’s homset
is a set. Plain and simple.

5

4 Some applications of categories
In this section, we wills see how category theory allows us to prove things generally, construct objects very
naturally etc.

4.1 Diagonalization proofs
Let’s start by looking at a very known kind of proof : diagonalization. We know that this proof idea is
used to show that there is no surjection from N to P(N), that there are more real numbers than natural
numbers, that the halting problem is undecidable and many more. Lawvere (1969) [1]generalised this
massively to just one theorem.

Theorem 4.1. In any cartesian closed category, if there exists an object A and a weakly point-
surjective morphism

T
g−→ Y T

then Y has the fixed point property.

Lawvere in fact generalised this even further, which is much easier to understand.

Theorem 4.2. Let T, Y be any objects in any category with finite products (including the empty
product 1). Then the following two statements cannot both be true:

1. there exists f : T × T → Y such that for all g : T → Y there exists x : 1 → T such that for all
a : 1 → T

⟨t, x⟩f = t.g

2. there exists α : Y → Y such that for all y : 1 → Y such that y.α ̸= y.

We are technically not equipped to solve this since this does rquire some category theoretical stuff that we
haven’t encountered. But, there’s a more down-to-earth version of this that is easier to understand and
would also serve our purpose. The theorem is due to Yanofsky [2].

Theorem 4.3. If Y is a set and there exists a function α : Y → Y without a fixed point (for all
y ∈ Y, α(y) ̸= y) then for all sets T and for all functions f : T × T → Y , there exists a function
g : T → Y such that for all t ∈ T , g(−) ̸= f(−, t).

Proof. Suppose the conditions of the statement hold. Now, there is a function ∆ : T → T × T sending t to
(t, t). Then let g : T → Y be defined as follows

A×A Y

A Y

f

α∆

g

In words, g(t) = α(f(t, t)). If g(−) = f(−, t) for some t = t0, then at t0 we have

f(t0, t0) = g(t0) = α(f(t0, t0))

contradicting that α does not have a fixed point.

How does one even use this?

4.1.1 Cantor’s theorem

As a start, let’s show that there is no bijection from N to P(N) (This is cantor’s theorem.) If there was,
then there would an enumeration of the elements of P(N), say S1, S2, Let 2 be the set {0, 1} and
consider α : 2 → 2 such that α(0) = 1 and α(1) = 0. Let f : N× N → 2 be such that

f(n,m) =

{
1 if n ∈ Sm

0 if n /∈ Sm

6

that is, f = χSm Let g be defined as

N× N 2

N 2

f

α∆

g

If we let G = {n ∈ N | n /∈ Sn} ⊆ N, then g = χG.

The setup is ready. Now note that if for some m0 ∈ N we have g(−) = f(−,m0), then
f(m0,m0) = g(m0) = α(f(m0,m0)) implying α has a fixed point, which we clearly see is false. Thus for all
m, g(−) = f(−,m0) and thus χG ̸= χSm for all m and hence G is not in the enumeration, contradicting
that P(N) is enumerable. This finishes the proof.

4.1.2 Russel’s paradox

Let’s look at Russel’s paradox, which states that the collection of all sets that are not members of
themselves is both a member of itself and not a member of itself.

Let Sets be some "universe" of sets. Again let α be as defined above. Let f : Sets×Sets → 2 be defined as

f(s, t) =

{
1 if s ∈ t

0 if s /∈ t

We construct g as

Sets× Sets 2

Sets 2

f

α∆

g

Again if for some t0, g(−) = f(−, t0), then

f(t0, t0) = g(t0) = α(f(t0, t0))

contradicting that α has no fixed point. This for all sets t, g(−) ̸= f(−, t). Since g is basically the
characteristic function of those sets who do not contain themselves, the only way to avoid the paradox is to
declare that this collection in Sets does not form a set itself.

4.1.3 The strong liar paradox

It’s a fun exercise to solve this extension of the liar paradox. Here we will be dealing with a ternary logic
system, consisting or true, false and meaningless. Let the set of these three truth values be 3 = {T, F,M}.
Consider the sentence

’yields falsehood or meaninglessness
when appended to its own quotation’
yields falsehood or meaninglessness
when appended to its own quotation

This is an issue because if this is true, then it is false or meaningless. If it is false, then it is true and hence
not meaningless. If it is meaningless, then it is true and not meaningless.

This can be encoded in terms of the theorem we proved,

Consider the set of english sentences Sent. Let f : Sent× Sent → 3 such that

f(s1, s2) =

T if a2 describes a1

M if it is meaningless for a2 to describe a1

F if a2 does not describe a1

Now let α : 3 → 3 such that α(T) = F and α(M) = T = α(F). Let g be defined as

Sent× Sent 3

Sent 3

f

α∆

g

Then g is the characteristic function of sentences (that is, maps to T) that are neither false nor
meaningless when describing themselves. This is again similar to Russel’s paradox.

7

4.1.4 Halting problem

This case is interesting because just dealing with sets will not be enough. We will add more structure to
the sets by attaching a notion of computable structures and recursively enumerable sets (this technically
uses the nmore general version that Lawvere proved, but the essence of the easier theorem we proved is
still there).

Let us define what we mean by a computable universe U. It is a category with the following properties

1. N and 2 are objects in U.

2. For every object C in Ob(U), there is some enumeration of the elements of C. An enumeration is a
total isomorphism eC : N → C (these objects are essentially the computable structures like trees,
graphs, strings etc).

3. For every partial function f : C → C′ (these are the morphisms) there is a corresponding number
⟨f⟩ ∈ N. This can be thought of as the Gödel numbering of the program that computes f (or
encoding in terms of turing machines if one likes).

4. For every partial function f : C → C′, there is a corresponding recursively enumerable set Wf ⊆ N.
For every c ∈ C (elements can be talked of in an arbitrary category, look at the section on types. But
here, all objects are sets so this makes sense naturally), f has a value at c if and only if e−1

C (c) ∈ Wf .

In such a computable universe, Halt is a total function Halt : N×N → 2 in U such that for all f : C → C′

we have

Halt(n,m) =

{
1 if n ∈ Wm

0 if n /∈ Wm

that is
Halt(−, ⟨f⟩) = χWf

Consider α : 2 → 2 to be defined as α(0) = 1 and α(1) =↑ (α is a partial function). We construct g as

N× N 2

N 2

Halt

α∆

g

We can now show that Halt is not total. Suppose Halt is defined at ⟨g⟩. Then

Halt(⟨g⟩, ⟨g⟩) = 1 ⇐⇒ ⟨g⟩ ∈ Wg ⇐⇒ g(⟨g⟩) = 1 ⇐⇒ α(Halt(⟨g⟩, ⟨g⟩)) = 1 = Halt(⟨g⟩, ⟨g⟩)

which is not true since α has no fixed point. Thus we cannot tell if all computable functions halt or not.

4.2 Types, data types and structures
In this section, we shall see some concrete applications of category theory to computer science stuff, more
specifically, data types and structures.

We know how data types are the basics of any (typed) programming languages (it’s fun to think of what
an untyped language might actually look like : For more info, look up the Bash language).

Category theory gives us a nifty little way to generalise types, and actually make more sense out of type
theory.2

4.2.1 Types

We must first talk about elements of a object in any category. We know that objects might not have any
elements inside them, because, well objects can be almost anything and may not have to even look like
sets. But in sets, we can talk about elements of a set A by looking at all possible functions from a set with
exactly one element to A, {·} → A.

Note that {·} is special. Every set has exactly one function that maps to this set (namely, the function
that sends everything in that set to the point), so this is called a terminal object. Borrowing this setup in
any arbitrary category with a terminal object T , we define the morphism T

f−→ X is a (generalised) element
of X.

2By the way, this is not some ideal curiosity, the programming language of Haskell is essentially built upon a categorical
framework. In fact, Haskell is almost a category itself; there’s a small technical issue which can be mended in the language itself.

8

Suppose A
f−→ B is a morphism in some category C. We can then write this as x : A ⊢ f(x) : B, that is, the

element (free variable) x is of type A, and f sends it to an element f(x) of type B.

Composition of morphisms is what is known in type theory as substitution. So if we have
A

f−→ g−→ C = A
g◦f−−→ C, this corresponds to

x : A ⊢ f(x) : B y : B ⊢ g(y) : C

x : A ⊢ g(f(x)) : C

This way of categorical thinking actually allows us to make different data types out of categories. In fact,
the power of this approach allows us to define data structures as well. The examples here are mostly from
Tatsuya hagino’s beautiful thesis [3].

4.2.2 Data types and Data structures

To get some context, let’s look at Set again. The cartesian product satisfies this commutative diagram
(where π1 and π2 are projections on the first and second coordinates respectively)

C

A A×B B

f
h

g

π1 π2

This just says that A×B is the unique (upto isomorphism, here bijection) such object that looks like a
product. We generalise this to any product of objects in any category by just saying this diagram defines
what a product of two objects is.

Writing h as ⟨f, g⟩, we can create a constructor for a product data type:

right object A×B with ⟨ , ⟩ is
π1 : A×B → A

π2 : A×B → B

end object

The word right is a technical categorical detail (called an adjunction) that allows us to hide a lot of details
like the diagram etc. And the ⟨ , ⟩ is another technical detail required for the construction of every data
type.

Here’s another data type, commonly known as the natural numbers:

left object nat with pr (,) is
zero : 1 → nat
succ : nat → nat

end object

One can clearly see what this means. The natural numbers are initially defined by 0, and then you can get
any natural number by always continuing to add 1. The commutative diagram for this structure is

C C

nat nat 1

g

pr(f,g) pr(f,g)

succ

f

zero

The type of pr(,) is

f : 1 → C g : C → C

pr(f, g) : nat → C

Here are several data structures defined similarly.

9

• Lists. The constructor is

left object list(A) with prl (,) is
nil : 1 → list(A)

cons : A× list(A) → list(A)

end object

The nil operation defines an empty list, whereas the cons operation appends an element to the list
(lists are recursively constructed as tuples; in fact prl stands for primitive recursion on lists). The
commutative diagram for this is

A× C C

A× list(A) list(A) 1

g

idA ×prl(f,g)

cons

prl(f,g)
f

nil

The type of prl(,) is

f : 1 → C g : A× C → C

prl(f, g) : list(A) → C

• Binary trees : The constructor is

left object BinTree(T) with prbt (,) is
tip : A → BinTree(A)

join : BinTree(A) × BinTree(A) → BinTree(A)

end object

The tip operation defines a root, and the join operators attaches two trees to a root as left and right
subtrees (and prbt stands for primitive recursion on binary trees). The commutative diagram is

C × C C

BinTree(A)× BinTree(A) BinTree(A) 1

g

tr(f,g)×tr(f,g)

cons

tr(f,g) f

tip

The type of prbt(,) is

f : 1 → C g : C × C → C

prbt(f, g) : BinTree(A) → C

• Infinite Lists. This is a fun data structure. Normally programming languages doesn’t allow infinite
lists; but categorically it is possible to define them (and in fact there are use cases of this, and Haskell
does use them). The constructor is

right object inflist(A) with fold (,) is
head : inflist(A) → A

tail : inflist(A) → inflist(A)

end object

The commutative diagram is as follows

C C

inflist(A) inflist(A) A

g

fold(f,g)

tail

fold(f,g)
f

head

And the type of fold(,) is

10

f : C → A g : C × C

fold(f, g) : C → inflist(A)

In fact, with a little more work one can define a constructor for Moore automa, for mealy automata etc.
We leave them for now since they require slightly more categorical nuance to define.

5 Conclusion
How deep does the water run? How far can we stretch the abstractness of category theory to get better
understanding of different fields? Turns out that the answer is very deep. John Baez [4] provided a table
that shows how category theory essentially says that extremely different looking things in completely
different fields are actually the manifestation of the same thing; he called it the Rosetta Stone (for
categories). The table in all its glory is as follows:

Category Theory Physics Topology Logic Computation
Object X Hilbert Space X Manifold X Proposition X Data type X
Morphism f :
X → Y

Operator f : X →
Y

Cobordism
f : X → Y

Proof f : X → Y
Program f : X →
Y

Tensor product
of objects X⊗Y

Hilbert space of
joint system X ⊗ Y

Disjoint union of
manifolds X ⊗ Y

Conjunction of
propositions X ⊗ Y

Product of data
types X ⊗ Y

Tensor product
of morphisms
f ⊗ g

Parallel processes
f ⊗ g

Disjoint union of
cobordisms f ⊗ g

Proofs carried out
in parallel f ⊗ g

Programs execut-
ing in parallel f ⊗ g

internal hom
X ⊸ Y

Hilbert space of
’anti X and Y ’
X∗ ⊗ Y

Disjoint union of
orientation re-
versed X and Y
X∗ ⊗ Y

Conditional propo-
sition X ⊸ Y

Function type X ⊸
Y

Table 1: The Rosetta Stone

Maybe I will exposit on this table in a separate report someday. Someday... For now, I end with a quote
from Tom Leinster.

Category theory takes a bird’s eye view of mathematics. From high in the sky, details become invisible, but
we can spot patterns that were impossible to detect from ground level. How is the lowest common multiple
of two numbers like the direct sum of two vector spaces? What do discrete topological spaces, free groups,

and fields of fractions have in common?

6 Acknowledgement
This report shall never have been possible without my algebra class asking for a presentation, and for that
I am indebted to professor Sujata Ghosh. The report was also vastly imporoved due to a help of a couple
of friends who suggested modifications and proof-read the material.

7 Bibliography

References
[1] Barry Mitchell, Jan-Erik Roos, Friedrich Ulmer, Hans-Berndt Brinkmann, Stephen U Chase, Paul

Dedecker, RR Douglas, PJ Hilton, F Sigrist, Charles Ehresmann, et al. Diagonal arguments and
cartesian closed categories. In Category Theory, Homology Theory and their Applications II:
Proceedings of the Conference held at the Seattle Research Center of the Battelle Memorial Institute,
June 24–July 19, 1968 Volume Two, pages 134–145. Springer, 1969.

[2] Noson S. Yanofsky. A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed
Points. Bulletin of Symbolic Logic, 9(3):362–386, September 2003.

[3] Tatsuya Hagino. A Categorical Programming Language, 2020.

[4] J. Baez and M. Stay. Physics, Topology, Logic and Computation: A Rosetta Stone, page 95–172.
Springer Berlin Heidelberg, 2010.

11

https://www.emis.de/journals/TAC/reprints/articles/15/tr15.pdf
https://www.emis.de/journals/TAC/reprints/articles/15/tr15.pdf
https://arxiv.org/abs/math/0305282
https://arxiv.org/abs/math/0305282
https://arxiv.org/abs/2010.05167
https://arxiv.org/abs/0903.0340

	Introduction
	Some remarkable coincidences... or is it?
	Sets
	Groups
	Rings
	Vector spaces over a field
	Topological spaces
	Propositions

	Categories
	Functors

	Some applications of categories
	Diagonalization proofs
	Cantor's theorem
	Russel's paradox
	The strong liar paradox
	Halting problem

	Types, data types and structures
	Types
	Data types and Data structures

	Conclusion
	Acknowledgement
	Bibliography

