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Some remarkable coincidences... or is it?

Throughout the history of mathematics, people have defined structures on sets
in various different ways. In recent times it was realised that there’s something
very fundamentally similar to almost all constructions. Let’s look at some of
them.



Sets

Consider Set to be the collection of all sets (whether this is a set itself is
irrelevant here) and functions between them. Then the following are true
about them.

▶ Composition of functions is again a function.

▶ Composition of functions is associative.

▶ For any functions f1 : A → B and f2 : B → C, there is a function
g : A → C, namely g = f2 ◦ f1.

▶ For any set S, there is an identity function idS : S → S, that is,
idB ◦f = f = f ◦ idA for any function f : A → B.
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Consider Grp to be the collection of all groups and group homomorphisms
between them. Then the following are true about them.

▶ Composition of group homomorphisms is again a group homomorphism.

▶ Composition of group homomorphisms is associative.

▶ For any group homomoprphisms f1 : G1 → G2 and f2 : G2 → G3, there
is a group homomorphism g : G1 → G3, namely g = f2 ◦ f1.
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that is, idG2 ◦f = f = f ◦ idG1 for any group homomorphism
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Rings

Consider Ring to be the collection of all rings and ring homomorphisms
between them. Then the following are true about them.

▶ Composition of ring homomorphisms is again a ring homomorphism.

▶ Composition of ring homomorphisms is associative.

▶ For any ring homomoprphisms f1 : R1 → R2 and f2 : R2 → R3, there is a
ring homomorphism g : R1 → R3, namely g = f2 ◦ f1.

▶ For any ring R, there is an identity ring homomorphism idR : R → R,
that is, idR2 ◦f = f = f ◦ idR1 for any ring homomorphism f : R1 → R2.
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Vector spaces over a field k

Consider Vectk to be the collection of all vector spaces over the field k and
linear maps between them. Then the following are true about them.

▶ Composition of linear maps is again a linear map.

▶ Composition of linear maps is associative.

▶ For any linear maps f1 : V1 → V2 and f2 : V2 → V3, there is a linear map
g : V1 → V3, namely g = f2 ◦ f1.

▶ For any vector space V , there is an identity linear map idR : R → R, that
is, idR2 ◦f = f = f ◦ idR1 for any linear map f : R1 → R2.
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Well... seems like algebra has a very common structure throughout. What
about things outside algebra?



Topological spaces

Definition
A topological space is a tuple (X, τ ) where X is a set and τ is a collection of
subsets of X such that the following holds:

1. ∅ and X are in τ .
2. If A, B ∈ τ , then A ∩ B ∈ τ .
3. For any indexing set I, if Ai ∈ τ for all i ∈ I, then ⋃

i∈I Ai ∈ τ

Example
(X, τ ) with X = {0, 1} and τ = {φ, {0}, {0, 1}}
(R, τ ) where τ contains the union of open intervals in R.
τ is called a topology on X , the sets in τ are called the open sets of X , and we
just write X if the topology understood.
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Definition
A function f : (X, τ1) → (Y, τ2) is said to be continuous if
U ∈ τ2 ⇒ f−1(U) ∈ τ1 where f−1 means the preimage.
In other words, a function is continuous if preimage of open sets is open.

Example
Consider the topological space (X, P(X)) and consider any other topological
space (Y, τ ). Then any function f : (X, P(X)) → (Y, τ ) is continuous.
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The collection Top of topological space and continuous functions satisfies the
following properties (as you might have guessed by now):

▶ Composition of continuous maps is again a continuous map.

▶ Composition of continuous maps is associative.

▶ For any continuous maps f1 : X1 → X2 and f2 : X2 → X3, there is a
linear map g : X1 → X3, namely g = f2 ◦ f1.

▶ For any topological space X , there is an identity continuous map
idX : X → X , that is, idX2 ◦f = f = f ◦ idX1 for any continuous map
f : X1 → X2.
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One more example before we close this section.

Consider Prop to be the collection of propositions (in some system) and
(equivalence classes of ) proofs between them. Then the following are true
about them.

▶ Composition of proofs is again a proof.

▶ Composition of proofs is associative.

▶ For any proofs X1 ⊢ X2 and X2 ⊢ X3, there is a proof X1 ⊢ X3, simply
by composing the two proofs (almost all logic system have this inference
rule). Logicians write this as

X ⊢ Y Y ⊢ Z
X ⊢ Z

▶ For any proposition X , there is a proof that proves X from X itself,
namely X ⊢ X
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So in fact topological spaces and logic (to some extent) also follow a similar
structure! This coincidences are too good to be true... So why not take the
properties we have been looking at as axioms for some generalized structure?



Table of Contents

Some remarkable coincidences... or is it?

Enter categories

Some applications of category theory



Definition
A category C consists of the following data.

▶ A collection of objects denoted by Ob(C)

▶ A collection of arrows, called morphisms between pairs of objects; x
f−→ y

means f is a morphism from x to y. The collection of all morphisms from
x to y is called the homset of x to y, denoted as homC(x, y)

▶ A composition rule : given x
f−→ y and y

g−→ z, there is a morphism
x

g◦f−−→ z.
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And we want these to satisfy some properties.
▶ Each object x has an identity morphism x

idx−→ x which satisfies
idy ◦f = f = f ◦ idx for any x

f−→ y.

▶ The composition is associative, that is, f ◦ (g ◦ h) = (f ◦ g) ◦ h whenever
w h−→ x

g−→ y
f−→ z.
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Example
As an example of a category, consider the category with just one object x and
only one morphism, which has to be x

idx−→ x

x

idx

Another example is the following slightly non trivial one (the unmarked self
loops are the identity morphisms)

w x y z
f

g◦f

g

h◦g

h
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From the discussion in the first section, Set, Grp, Ring, Vect, Top, Prop
are all categories.

Some more categories include that of abelian groups and group
homomorphisms between them (called AbGrp), partially ordered sets and
monotone functions (called Pos) etc.

Almost any structure you see in math, along with their respective
structure-preserving maps probably forms a category.

But the actual strength of category theory comes from the following.
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Definition
Let C and D be two categories. Then F is called a covariant functor between
these two categories if it does the following:
▶ For any object A in Ob(C), it gives an object F (A) in Ob(D).

▶ For any morphism A
f−→ B in C, it gives a morphism F (A) F (f)−−→ F (B) in

D such that following diagram commutes

A B

F (A) F (B)

f

F F

F (f)
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these two categories if it does the following:
▶ For any object A in Ob(C), it gives an object F (A) in Ob(D).
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f−→ B in C, it gives a morphism F (A) F (f)−−→ F (B) in

D such that following diagram commutes
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This allows us to relate different theories of math together. What can be done
in one theory can be borrowed or looked at differently in other theories.

Example
Consider the functor F that maps Grp to Set. It takes in a group G and
gives F (G), the underlying set of the group. As for morphisms, F takes a
group homomorphism and gives the underlying function (that is, this functor
essentially forgets the group structure.) One can verify that this is indeed a
functor.

A more interesting example is the homotopy and homology functors. They
allow us to study topological spaces by actually looking at groups.
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Definition
Let C and D be two categories. Then F is called a contravariant functor
between these two categories if it does the following:
▶ For any object A in Ob(C), it gives an object F (A) in Ob(D).

▶ For any morphism A
f−→ B in C, it gives a morphism F (B) F (f)−−→ F (A) in
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Let C and D be two categories. Then F is called a contravariant functor
between these two categories if it does the following:
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D such that following diagram commutes
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Note that the bottom arrow has now flipped. That’s the main difference
between covariant and contravariant functors.

Example
Consider the functor F that maps Vectk to Vectk. It takes in a vector space
V and outputs the dual vector space V ∗ = F (V ). As for morphisms, it takes
in a linear map f : V → W and outputs the dual mapo
F (f ) := f ∗ : W ∗ → V ∗ which acts as f ∗(φ) = φ ◦ f .

One quickly verifies that this is a contravariant functor.

A more interesting example is that of cohomology functors. They again allow
us to study topological spaces using rings this time.
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In this section, I will tell some stories without being extremely pedantic. I will
not define everything but treat things as fairy tales.



Let’s start by looking at a very known kind of proof : diagonalization. We
know that this proof idea is used to show that there is no surjection from N to
P(N), that there are more real numbers than natural numbers, that the
halting problem is undecidable and many more. Lawvere (1969) [1] generalised
this massively to just one theorem.



Theorem
In any cartesian closed category, if there exists an object A and a weakly
point-surjective morphism

A
g−→ Y A

then Y has the fixed point property.

Lawvere in fact generalised this even further, which is much easier to
understand.

Theorem
Let A, Y be any objects in any category with finite products (including the
empty product 1). Then the following two statements cannot both be true:

1. there exists f : A × A → Y such that for all g : A → Y there exists
x : 1 → A such that for all a : 1 → A

⟨a, x⟩f = a.g

2. there exists α : Y → Y such that for all y : 1 → Y such that y.α ̸= y
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1. there exists f : A × A → Y such that for all g : A → Y there exists
x : 1 → A such that for all a : 1 → A

⟨a, x⟩f = a.g

2. there exists α : Y → Y such that for all y : 1 → Y such that y.α ̸= y



The proof is very small, but there’s many things we need to understand first so
I will skip that. I will only show that there is just one main diagram that is
used in the proof (the construction of g)

A × A Y

A Y

f

α∆

g

I will now show how different problems are just different instances of this same
diagram; it might look like I am just writing the same thing, but that’s the fun
of category theory! (This is meant to invoke curiosity, the beautiful paper by
Yanofsky [2] from where I read all this will be in the bibliography)

This is one of the more beautiful results out of elementary category theory
that I have seen!
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N × N 2

N 2

f

α∆

g

(a) Cantor’s theorem

Sets × Sets 2

Sets 2

f

α∆

g

(b) Russel’s paradox

Sent × Sent 3

Sent 3

f

α∆

g

(a) Strong liar paradox

N × N 2

N 2

Halt

α∆

g

(b) Halting problem



(If I ever reach here in my slides while presenting, high five to myself)

Let’s talk about concrete computer science stuff now. We know how data
types are the basics of any (typed) programming languages (it’s fun to think of
what an untyped language might actually look like : For more info, look up
the Bash language).

Category theory gives us a nifty little way to generalise types, and actually
make more sense out of type theory. I will give a very brief look into that
world now

(By the way, this is not some ideal curiosity, the programming language of
Haskell is essentially built upon a categorical framework).
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For brevity, just note that there is a way to talk of elements of objects (even if
they are not sets or anything) in category theory, details will be in the report.
We move forward.

Suppose A
f−→ B is a morphism in some category C. We can then write this as

x : A ⊢ f (x) : B, that is, the element (free variable) x is of type A, and f
sends it to an element f (x) of type B.

Composition of morphisms is what is known in type theory as substitution. So
if we have A

f−→ g−→ C = A
g◦f−−→ C, this corresponds to

x : A ⊢ f (x) : B y : B ⊢ g(y) : C
x : A ⊢ g(f (x)) : C
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This way of categorical thinking actually allows us to make different data
types out of categories. In fact, the power of this approach allows us to define
data structures as well.

All the examples next are taken from Tatsuya Hagino’s beautiful 2020 thesis
[3] (the paper will be in the bibliography).
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To get some context, let’s look at Set again. The cartesian product satisfies
this commutative diagram (where π1 and π2 are projections on the first and
second coordinates respectively)

C

A A × B B

f
h

g

π1 π2

This just says that A × B is the unique (upto isomorphism, here bijection)
such object that looks like a product. We generalise this to any product by
just saying this diagram defines what a product of two objects is.

Writing h as ⟨f, g⟩, we can create a constructor for a product data type:
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right object A × B with ⟨ , ⟩ is
π1 : A × B → A

π2 : A × B → B

end object

The word right is a technical categorical detail (called an adjunction) that
allows us to hide a lot of details like the diagram etc. And the ⟨ , ⟩ is another
technical detail required for the construction of every data type.

Here’s another data type, commonly known as the natural numbers:

left object nat with pr ( , ) is
zero : 1 → nat
succ : nat → nat

end object

One can clearly see what this means. The natural numbers are initially defined
by 0, and then you can get any natural number by always continuing to add 1.
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I will present some more data structures now (which can also be treated as
data types in programming); the left is a list, the right is a binary tree, and
the last one is an infinite list.

left object list(A) with prl ( , ) is
nil : 1 → list(A)
cons : A × list(A) → list(A)

end object

left object BinTree(T ) with prlTree ( , ) is
tip : A → BinTree(A)
join : BinTree(A) × BinTree(A) → BinTree(A)

end object

right object inflist(A) with fold ( , ) is
hd : inflist(A) → A

cons : inflist(A) → inflist(A)
end object
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I would like to end this with one view that stuck with me from a long time
ago; how category theory is really a bird’s eye view of all of mathematics, and
also of processes in general. I will let John Baez [4] show the correspondences.

Figure 3: The correspondences
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And a quote from Tom Leinster

Category theory takes a bird’s eye
view of mathematics. From high in
the sky, details become invisible, but
we can spot patterns that were
impossible to detect from ground
level. How is the lowest common
multiple of two numbers like the
direct sum of two vector spaces?
What do discrete topological spaces,
free groups, and fields of fractions
have in common?



And that’s it! Details for everything will be in the report, and if you have any
questions you can find me on Discord at nekomatism or Nekoma#2259.
Obviously mail is always open at hayatea90@gmail.com

mailto:hayatea90@gmail.com
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