POWER GRAPH OF FINITE GROUPS

Basudeb Roy

AGENDA

Introduction

Basic Definition
Power Graph
Proper Power Graph
Directed Power Graph
Conclusion

INTRODUCTION

- Contamination between branches of mathematics is interesting
- Union of two branches such as Group theory and Graph theory
- 1878 when Cayley's graph was defined
- In 1955, Brauer and Fowler introduced
- commuting graph
- In early 2000 the directed power graphs was introduce.

GROUP

- Group:- G is non-empty, an operation $*: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$
- $*$ is associative
- e_{G} identity element
- a^{-1} is inverse for all a belongs to G .
- Example:- $(\mathrm{Z},+)$
- All group considered here are finite.
- Order of a group is $|\mathrm{G}|$.
- Sub-group:-
- $\mathrm{H} \subseteq \mathrm{G}$
- $(\mathrm{H}, *)$ is a group itself.
- Example: - $(\mathrm{mz},+)$ is a sub-group of $(\mathrm{z},+)$
- Z is the set of integers.
- Cyclic Group :-
- g belongs to G
- $G=\langle g\rangle$
- G is known as generator

GRAPH

- Graph :- a couple $\Gamma=\left(\mathrm{V}_{\Gamma}, \mathrm{E}_{\Gamma}\right)$
- V_{Γ} set of vertices
- E_{Γ} edge set
- $\mathrm{E}_{\Gamma} \subseteq \mathrm{V}_{\Gamma} \times \mathrm{V}_{\Gamma}$
- $e=\{x, y\}$
- for some distinct x and y in V_{Γ}
- Adjacent
- Directed Graph:- a couple $\vec{\Gamma}=\left(\mathrm{V}_{\vec{\Gamma}}, \mathrm{E}_{\vec{\Gamma}}\right)$
- $V_{\vec{\Gamma}}$ set of vertices
- $E_{\vec{\Gamma}}$ arc set
- $\mathrm{E}_{\vec{\Gamma}} \subseteq\left(\mathrm{V}_{\vec{\Gamma}} \times \mathrm{V}_{\Gamma}\right) \backslash \Delta$
- $\Delta=\left\{(x, x) \mid x \in V_{\vec{r}}\right\}$
- $(x, y) \in E_{\vec{r}}$, then it said x dominates y.

POWER GRAPH

- Power Graph:- G be a group
- Denoted as P(G)
- $\mathrm{V}_{\mathrm{P}(\mathrm{G})}$ is the vertex set
- $E_{P(G)}$ is the edge set
- $e=\{x, y\} \in E_{P(G)}$
- There exist m
- $X=y^{m}$
- $Y=x^{m}$
- S_{4} is an example of cyclic group
- recognize only the star vertex as the identity element
- Observasion:- for all $x \in V_{P(G)}$, we have that $\operatorname{deg}(x) \geq o(x)-1$
- $\{x, y\} \in E_{P(G)}$ for all $y \in\langle x\rangle \backslash\{x\}$
- we have $|\langle x\rangle|=o(x)$

EXAMPLE

PROPER POWER GRAPH

- Proper Power Graph:
- Denoted by $\mathrm{P}^{*}(\mathrm{G})$
- $\mathrm{P}^{*}(\mathrm{G})$ is an induced subgraph by $\mathrm{G} \backslash\{1\}$

PROPERTIES:-

- Lemma 1:- Let G be a group and H G. Then $P(G)_{H}=P(H)$.
- $V_{P(H)}=H=V_{P(G) H}$
- $e=\{x, y\} \in E_{P(H)}$ iff $e \in E_{P(G) H}$
- $\exists \mathrm{m}$ such that $\mathrm{x}=\mathrm{y}^{\mathrm{m}}$ or $\mathrm{y}=\mathrm{x}^{\mathrm{m}}$.
- Lemma 2:- L Let G be a cyclic group. If G is not a p -group, then for all x $\in G \backslash\{1\}$ with $\langle x\rangle=G$ there exists $y \in G$ such that x and y are not joined in $P(G)$.
- Corollary :-
- Let G be a cyclic group. Then $\mathrm{P}(\mathrm{G})$ is a complete graph if and only if G is cyclic of prime power order.

DIRECTED POWER GRAPH

- Defnition:- Let G be a group. The directed power graph of G ,
- denoted $\vec{p}(\mathrm{G})$
- $\vee_{\vec{p}(G)}=G$
- $(x, y) \in A_{p}(G) I$
- $f x \neq y$
- \exists a positive integer m
- $y=x^{m}$.
- Example:- dihedral group of 8 elements: $D 4=\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b\right.$, $\left.a^{3} b\right\}$
- Lemma 1:- Let G be a group. Then $\vec{p}(\mathrm{G})$ is transitive.
- Let assume $x, y, z \in G$
- $(x, y),(y, z) \in A$
- $\exists \mathrm{m}$ s.t. $\mathrm{y}=\mathrm{x}^{\mathrm{m}}$
- \exists ns.t. $z=y^{n}$
- $Z=x^{m n}$

EXAMPLE

SUMMARY

- We studied Group and Graph.
- We studied power graph.
- We studied Proper Power graph.
- We studied Directed Power Graph
- Open Question:-
- Do there exists a formula for the maximum length of a cycle/path of a power graph?

THANK YOU

Basudeb Roy
basudebroy82@gamil.com

