POWER GRAPH OF FINITE GROUPS

Basudeb Roy

AGENDA

Introduction

Basic Definition

Power Graph

Proper Power Graph

Directed Power Graph

Conclusion

INTRODUCTION

- Contamination between branches of mathematics is interesting
- Union of two branches such as Group theory and Graph theory
- 1878 when Cayley's graph was defined
- In 1955, Brauer and Fowler introduced
 - commuting graph
- In early 2000 the directed power graphs was introduce.

GROUP

- Group:- G is non-empty , an operation $\ast: G \times G \to G$
 - * is associative
 - e_G identity element
 - a⁻¹ is inverse for all a belongs to G.
- Example:- (Z, +)
- All group considered here are finite.
- Order of a group is |G|.
- Sub-group:-
 - H <u>⊆</u> G
 - (H, *) is a group itself.
- Example: (mz, +) is a sub-group of (z, +)
 - z is the set of integers.
- Cyclic Group : -
 - g belongs to G
 - G = (g)
 - G is known as generator

GRAPH

- Graph :- a couple $\Gamma = (V_{\Gamma}, E_{\Gamma})$
 - V_Γ set of vertices
 - E_{Γ} edge set
 - $E_{\Gamma} \subseteq V_{\Gamma} \times V_{\Gamma}$
- e = {x, y}
 - for some distinct x and y in V_{Γ}
 - Adjacent
- Directed Graph:- a couple $\vec{\Gamma} = (V_{\vec{\Gamma}}, E_{\vec{\Gamma}})$
 - $V_{\vec{\Gamma}}$ set of vertices
 - $E_{\vec{\Gamma}}$ arc set
 - $\mathsf{E}_{\vec{\Gamma}} \subseteq (\mathsf{V}_{\vec{\Gamma}} \times \mathsf{V}_{\Gamma}) \land \Delta$
 - $\Delta = \{(\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in V_{\vec{\Gamma}}\}$
- $(x, y) \in \mathsf{E}_{\vec{\Gamma}'}$ then it said x dominates y.

POWER GRAPH

- Power Graph:- G be a group
 - Denoted as P(G)
 - V_{P(G)} is the vertex set
 - E_{P(G)} is the edge set
 - $e = \{x, y\} \in E_{P(G)}$
 - There exist m
 - X = y^m
 - Y = x^m
- S₄ is an example of cyclic group
- recognize only the star vertex as the identity element
- Observasion:- for all $x \in V_{P(G)}$, we have that $deg(x) \ge o(x) 1$
 - $\{x, y\} \in E_{P(G)}$ for all $y \in \langle x \rangle \setminus \{x\}$
 - we have $|\langle x \rangle| = o(x)$

EXAMPLE

7

PROPER POWER GRAPH

- Proper Power Graph:
 - Denoted by P*(G)
 - P*(G) is an induced subgraph by G\{1}

PROPERTIES:-

- Lemma 1:- Let G be a group and H G. Then $P(G)_{H} = P(H)$.
 - $V_{P(H)} = H = V_{P(G)H}$
 - $e = \{x, y\} \in E_{P(H)} \text{ iff } e \in E_{P(G)H}$
 - \exists m such that $x = y^m$ or $y = x^m$.
- Lemma 2:- L Let G be a cyclic group. If G is not a p-group, then for all x ∈ G\{1} with ⟨x⟩ = G there exists y ∈ G such that x and y are not joined in P(G).
- Corollary :-
 - Let G be a cyclic group. Then P(G) is a complete graph if and only if G is cyclic of prime power order.

DIRECTED POWER GRAPH

- Defnition:- Let G be a group. The directed power graph of G,
 - denoted $\vec{p}(G)$
 - $V_{\vec{p}(G)} = G$
 - (x, y) $\in A_{\vec{p}(G)}$ I
 - f x ≠ y
 - \exists a positive integer m
 - y = x^m.
- Example:- dihedral group of 8 elements: D4 = {1, a, a², a³, b, ab, a²b, a³b}
- Lemma 1:- Let G be a group. Then $\vec{p}(G)$ is transitive.
 - Let assume x, y, z ∈ G
 - $(x, y), (y, z) \in A$
 - ∃ m s.t. y = x^m
 - ∃ n s.t. z = yⁿ
 - Z = x^{mn}

EXAMPLE

SUMMARY

- We studied Group and Graph.
- We studied power graph.
- We studied Proper Power graph.
- We studied Directed Power Graph
- Open Question:-
 - Do there exists a formula for the maximum length of a cycle/path of a power graph?

THANK YOU

Basudeb Roy basudebroy82@gamil.com