
How many distinct graphs are there on

four vertices

Project Report

Submitted by

Priyanka Jana

JRF CS

Indian Statistical Institute

Kolkata

April 21, 2024

1



1 Introduction

This elementary problem in graph theory will be so much calculative if we try to solve only using

graph theoretical tools. Even in graphs with 4 vertices we have to look at 26 = 64 graphs and find

relations between them . But with the help of group theoretical tool group action this calculation will

become very simple.

2 Recollection of basic definitions and results

2.1 Group Operations

Definition 2.1. (Group Action) An operation of a group G on a set S is a rule for combining an

element g of G and an element s of S to get another element of S. In other words, it is a map

G× S −→ S. An operation is required to satisfy the following axioms:

1. 1 ⋆ s = s for all s ∈ S.(Here 1 is the identity of G.)

2. associative law: (gg′) ⋆ s = g ⋆ (g′ ⋆ s), for all g, g′ ∈ G and all s ∈ S.

Definition 2.2. (Orbit) Given an operation of a group G on a set S, an element s will be sent to

various other elements by the group operation. We collect together those elements, obtaining a subset

called the orbit Os of s:

Os = {s′ ∈ S : s′ = g ⋆ s for some g in G }.

The orbits for a group action are equivalence classes for the equivalence relation

s ∼ s′ if s′ = gs, for some g in G. Hence, the orbits partitions the set S.

Note that if G is finite, then the number of elements in the orbit of s is at most equal to the order

of G, but it might be less. We note the following properties of orbits.

1. For every s ∈ S we have s ∈ Os since s = 1 ⋆ s.

2. If t ∈ Os for some s ∈ S then Ot = Os. To see this note that t = g ⋆ s (for some g ∈ G) means

that h ⋆ t = h ⋆ (g ⋆ s) = hg ⋆ s for all h ∈ G. Thus every element of Ot belongs to Os. On the

other hand t = g ⋆ s implies that s = g−1 ⋆ t, so s ∈ Otand hence Os ⊆ Ot.

3. It follows from above that if some element r of S belongs to the orbits of both s and t, then Or

is equal to both Os and Ot, so these are equal to each other. So if the orbits determined by two

different elements intersect, then they coincide fully. The alternative is that they don’t intersect

at all.
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4. So the action of G partitions the set S into a collection of disjoint subsets, which are orbits. Note

that G acts separately upon each orbit, in the sense that elements of G do not move elements

of S from one orbit to another, they only move elements around within their own orbit.

5. An action with only one orbit is called transitive. If G acts transitively on the set S, it means

that given any elements s, t of S there is an element g of G for which g ⋆ s = t.

Definition 2.3. (Stabilizer) The stabilizer of an element s of S is the set of group elements that

leave s fixed. It is a subgroup of G that we often denote by Gs:

Gs = {g ∈ G : gs = s}.

Example 2.4 Let n be a positive integer. The group G = Sn acts on the set S = {1, 2, · · · , n} by

σ ⋆ i = σ(i) for all i ∈ {1, 2, · · · , n}.

Lemma 2.5. Let G be a group acting on a set S and let s ∈ S. Then Gs is a subgroup of G.

Proof The the identity element of G belongs to Gs is immediate from our definition of group action.

Suppose now that g, h ∈ Gs. Then gh ⋆ s = g ⋆ (h ⋆ s) = g ⋆ s = s, so gh ∈ Gs and Gs is closed

under the group operation of G. Finally, if g ∈ Gs then g ⋆ s = s and so g−1 ⋆ (g ⋆ s) = g−1 ⋆ s. Also

g−1 ⋆ (g ⋆ s) = (g−1g) ⋆ s = id ⋆ s = s. Hence g−1 ⋆ s = s which means g−1 ∈ Gs. Hence Gs is a

subgroup of G.

Proposition 2.6. Let S be a set on which a group G operates, and let s be an element of S. Let H

and Os be the stabilizer and orbit of s, respectively. There is a bijective map Φ : G/H −→ Os defined

by [aH] 7→ as. This map is compatible with the operations of the group: Φ(g[C]) = gΦ([C]) for every

coset C and every element g in G.

Proof It is clear that the map Φ defined in the statement of the proposition will be compatible with

the operation of the group, if it exists. Symbolically, Φ simply replaces H by the symbol s. What is

not so clear is that the rule [gH] 7→ gs defines a map at all. Since many symbols gH represent the

same coset, we must show that if a and b are group elements, and if the cosets aH and bH are equal,

then as and bs are equal too. Suppose that aH = bH. Then a−1b is in H. Since H is the stabilizer of

s, a−1bs = s, and therefore as = bs. Our definition is legitimate, and reading this reasoning backward,

we also see that Φ is an injective map. Since Φ carries [gH] to gs, which can be arbitrary element of

Os, Φ is surjective as well as injective.

2.2 The Counting Formula

Let H be a subgroup of a finite group G. As we know, all cosets of H in G have the same number

of elements, and with the notation G/H for the set of cosets, the order |G/H| is what is called the
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index [G : H] of H in G. The Counting Formula:

|G| = |H||G/H|. (1)

There is a similar formula for an orbit of any group operation:

Theorem 2.7. (Orbit-Stabilizer Theorem) Let S be a finite set on which a finite group G operates,

and let Os and Gs be the orbit and stabilizer of an element s of S. Then

|G| = |Gs||Os|, or
(order of G)=(order of stabilizer) · (order of orbit).

Proof This follows from counting formula (1) and proposition (2.6).

2.3 Burnside’s Theorem

Burnside’s Theorem will allow us to count the orbits. This is the corollary of Orbit-Stabilizer Theorem.

Definition 2.8. If group G acts on S and g ∈ G, fix(g) is the set of elements of S, which are fixed

by g.

fix(g) = {s ∈ S : g ⋆ s = s}.

Theorem 2.9. (Burnside’s Theorem) If a finite group G acts on a finite S then the number of orbits

that make up S is:

|O| = 1
|G|

∑
g∈G

|fix(g)|.

Proof Let O be the set of orbits. We number the orbits that make up S arbitrarily, as O1, · · · , Ok.

Consider the sum ∑
s∈S

|Gs| =
k∑

i=1

k∑
s∈Oi

|Gs|

=

k∑
i=1

|Oi||Gs|

=

k∑
i=1

|Oi|
|G|
|Os|

=

k∑
i=1

|G|

= |G|
k∑

i=1

1

= |G||O|

4



Then |O| = 1
|G|

∑
s∈S

|Gs|. Now,

∑
s∈S

|Gs| =
∑
s∈S

∑
g∈Gs

1

=
∑
g∈G

∑
s∈fix(g)

1

=
∑
g∈G

|fix(g)|.

Therefore |O| = 1
|G|

∑
g∈G

|fix(g)|.

2.4 What is Graph

Definition 2.10. (Graph) A graph G is a triple consisting of a vertex set V , an edge set E, and a

relation that associates with each edge two vertices (not necessarily distinct) called its endpoints. We

draw a graph on paper by placing each vertex at a point and representing each edge by a line joining

the locations of its endpoints.

Example 2.11 In the graph in figure (1), the vertex set is {x, y, z, w}, the edge set is {e1, e2, e3, e4, e5, e6}
and the assignment of endpoints to edges can be read from the picture.

Figure 1:
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Definition 2.12. (Simple graph) A simple graph is a graph having no loops or multiple edges. We

specify a simple graph by its vertex set and edge set, treating the edge set as a set of unordered pairs

of vertices and writing e = {u, v} for an edge e with endpoints u and v.

Example 2.13 On the below are two drawings of a simple graph. The vertex set is {u, v, w, x, y}
and the edge set is {{u, v}, {u,w}, {u, x}, {v, x}, {v, w}, {x,w}, {x, y}}.

Figure 2:

Definition 2.14. (Graph isomorphism) An isomorphism from a simple graph G to a simple graph

H is a bijection f : V (G) −→ V (H) such that {u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(H). We

say ”G is isomorphic to H”.

Example 2.15 The graphs G and H drawn below are graph with four vertices and four edges. Define

the function f : V (G) −→ V (H) by f(w) = a, f(x) = d, f(y) = b, f(z) = c. f is a bijection and check

that f preserves edges and non-edges. So, f is an isomorphism.

Figure 3: graph G and graph H

3 How many different graphs are there on four vertices

In this section we will solve the problem stated in the title. How to proceed:

(a) We will consider a group G and a set S and will define a group operation.
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(b) Now our graph theory problem has been converted to group theory problem. The way we should

define our operation so that One fix orbit will contain all the isomorphic graphs.

(c) Now our work is to count the number of orbits. Burnside’s Theorem will do that.

Problem 1. How many different graphs are there on four vertices? In this case ”graphs” are ”simple

graph” and ”different” means ”non-isomorphic”.

Solution 1. Consider the group G as permutations of the four vertices, so G = S4 and S is the set

of all graphs on four vertices. Operation of an element is permuting the vertices with relabeling the

edges.

The complete graph K4 with four vertices have six edges. Here we are labelling vertex set as {1, 2, 3, 4}
and labelling edge set as {e1 = {1, 2}, e2 = {1, 3}, e3 = {1, 4}, e4 = {2, 3}, e5 = {2, 4}, e6 = {3, 4}}.
If a particular edge is present in a graph we put ’P’, otherwise we will put ’A’. Now we will find

cardinality of fix(g), for all g ∈ G.

(a) Identity permutation : It will fix all the graphs. So, |fix(1)| = 26.

(b) One 2− cycle : Consider g = (12) and the graph s

Figure 4: graph s
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Figure 5: graph (12) ⋆ s

We can use (P, A, A, P, P, P) to represent the graph s. After operation representation of the

graph is (P, P, P, A, A, P). Two graphs are identical if their representations are same.

Now think of any graph on which cycle (12) is acting. If e1 is present in s, then after operation

it should present. Depending on e2, the edge e4 will be present or absent, depending on e3, e5

will be present or absent and if e6 is present in s then e6 should present in the graph (12) ⋆ s.

Hence the contribution is 2 × 2 × 2 × 2 = 24. S4 has 6 2−cycle, so the contribution of all is

6× 24.

(c) Two 2− cycle : Consider g = (12)(34). e1 will remain as it is, e2 will label as e5 and vice-versa,

e3 will label as e4 and vice-versa, e6 will remain as it is. So, one cycle contribute 2×2×2×2 = 24.

And S4 have 1
2
4C2 = 3 many permutation, so the contribution of all is 3× 24.

(d) 3−cycle : Consider g = (123). After operation e1 = {1, 2} will label as e4 = {2, 3} or e2 = {1, 3}
and vice-versa, e3 = {1, 4} will label as e5 = {2, 4} or e6 = {3, 4} and vice-versa. There are

4× 2 = 8 such permutations of vertives, so the contribution of all is 8× (2× 2) = 8× 22.

(e) 4− cycle : Consider g = (1234). After operation e1 = {1, 2} will label as e4 = {2, 3} or e6{3, 4}
or e3 = {1, 4} and vice-versa; e2 = {1, 3} will label as e5 = {2, 4} and vice-versa. There are

3! = 6 such permutations of vertices, so the contribution of all is 6× (2× 2) = 6× 22.

(f) 4− cycle : Consider g = (1234). After operation e1 = {1, 2} will label as e4 = {2, 3} or e6{3, 4}
or e3 = {1, 4} and vice-versa; e2 = {1, 3} will label as e5 = {2, 4} and vice-versa. There are

3! = 6 such permutations of vertices, so the contribution of all is 6× (2× 2) = 6× 22.

Therefore, number of orbits = 1
4! (2

6 + 6 · 24 + 3 · 24 + 8 · 22 + 6 · 22) = 11. Thus, the number of

distinct graph on four vertices is 11.
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It is possible, though a bit difficult, to see that for n vertices the result is:

f(n) =
∑

j

∏n
k=1

1
kjk jk!

∏⌊n/2⌋
k=1 2kjk

∏⌊(n−1)/2⌋
k=1 2kj2k+1

∏⌊n/2⌋
k=1

(
jk
2

)∏
1≤r<s≤n−1 gcd(r, s)

jrjs

where the sum is over all partitions j = (j1, j2, · · · , jn) of n, that is, over all j such that j1 + 2j2 +

3j3 + · · ·+ njn = n, and C(m, 2) = 4C2. With this formula and a computer it is easy to compute the

number of graphs when n is not too large; for example, f(5) = 34, so there are 34 different five-vertex

graphs.
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