How many different graphs are there on four vertices

Priyanka Jana

ISI Kolkata 19th April, 2024

Definition 1: Group Action

An operation of a group G on a set S is a rule for combining an element g of G and an element s of S to get another element of S. In other words, it is a map $G \times S \rightarrow S$. An operation is required to satisfy the following axioms:

- 1. $1 \star s = s$ for all $s \in S$.(Here 1 is the identity of G.)
- 2. associative law: $(gg') \star s = g \star (g' \star s)$, for all $g, g' \in G$ and all $s \in S$.

Definition 2: Orbit O_s of s

$$\mathsf{O}_s = \{ s' \in S : s' = g \star s \text{ for some } g \text{ in } G \}$$

The orbits for a group action are equivalence classes for the equivalence relation $s \sim s'$ if $s' = g \star s$, for some $g \in G$. The orbits partitions the set S.

Definition 3: Stabilizer of an element

The *stabilizer* of an element s of S is the set of group elements that leave s fixed. It is a subgroup of G that we denote by G_s : $G_s = \{g \in G : g \star s = s\}$.

Example: Let *n* be a positive integer. The group $G = S_n$ acts on the set $S = \{1, 2, \dots, n\}$ by $\sigma \star i = \sigma(i)$ for all $i \in \{1, 2, \dots, n\}$.

Theorem 1: Orbit Stabilizer Theorem

Let S be a finite set on which a finite group G operates, and let O_s and G_s be the orbit and stabilizer of an element s of S. Then

 $|G| = |G_s||O_s|$, or (order of G)=(order of stabilizer) · (order of orbit). Burnside's Theorem will allow us to count the orbits. This is the corollary of Orbit-Stabilizer Theorem.

Definition 4

If group G acts on S and $g \in G$, fix(g) is the set of elements of S, which are fixed by g. fix $(g) = \{s \in S : g \star s = s\}$

Theorem 2: Burnside's Theorem

If a finite group G acts on a finite S then the number of orbits that make up S is:

 $|O| = \frac{1}{|G|} \sum_{g \in G} |\mathsf{fix}(g)|.$

Problem: How many different graphs are there on four vertices? In this case "different" means "non-isomorphic".

Solution: Consider the group G is permutations of the four vertices, so $G = S_4$ and S is the set of all graphs on four vertices. How G is acting on S: it is renaming the edges of a graph.

The complete graph K_4 with four vertices have six edges. Labelling edges as $\{e_1 = \{1,2\}, e_2 = \{1,3\}, e_3 = \{1,4\}, e_4 = \{2,3\}, e_5 = \{2,4\}, e_6 = \{3,4\}\}$. If a particular edge is present in a graph we put 'P', otherwise we will put 'A'. Now we will find cardinality of fix(g), for all $g \in G$.

Identity permutation : It will fix all the graphs. So, $|fix(1)| = 2^6$.

one 2 - cycle: Consider g = (12) and the graph s

Figure: The graph s

We can use (P, A, A, P, P, P) to represent the graph s.

Figure: The graph $(12) \star s$

Here representation of the graph is (P, P, P, A, A, P). Now think of any graph on which (12) is acting. If e_1 is present in s, then after operation it should present. Depending on e_2 , the edge e_4 will be present or absent, depending on e_3 , e_5 will be present or absent and if e_6 is present in s then e_6 should present in the graph (12) $\star s$. Hence the contribution is $2 \times 2 \times 2 \times 2 = 2^4$. S_4 has 6 2-cycle, so the contribution of all is 6×2^4 . *Two* 2 – *cycle* : Consider g = (12)(34). e_1 will remain as it is, e_2 will label as e_5 and vice-versa, e_3 label as e_4 and vice-versa, e_6 will remain as it is. So, one cycle contribute $2 \times 2 \times 2 \times 2 = 2^4$. And S_4 have $\frac{1}{2}{}^4C_2 = 3$ many permutation, so the contribution of all is 3×2^4 .

3 - cycle: Consider g = (123). After operation $e_1 = \{1, 2\}$ will label as $e_4 = \{2, 3\}$ or $e_2 = \{1, 3\}$ and vice-versa, $e_3 = \{1, 4\}$ will label as $e_5 = \{2, 4\}$ or $e_6 = \{3, 4\}$ and vice-versa. There are $4 \times 2 = 8$ such permutations of vertives, so the contribution of all is $8 \times (2 \times 2) = 8 \times 2^2$.

4 - cycle: Consider g = (1234). After operation $e_1 = \{1, 2\}$ will label as $e_4 = \{2, 3\}$ or $e_6\{3, 4\}$ or $e_3 = \{1, 4\}$ and vice-versa; $e_2 = \{1, 3\}$ will label as $e_5 = \{2, 4\}$ and vice-versa. There are 3! = 6 such permutations of vertices, so the contribution of all is $6 \times (2 \times 2) = 6 \times 2^2$.

Therefore, number of orbits $= \frac{1}{4!}(2^6 + 6 \cdot 2^4 + 3 \cdot 2^4 + 8 \cdot 2^2 + 6 \cdot 2^2) = 11$. Thus, the number of distinct graph on four vertices is 11.

Thank You!