
Automorphism Group of Graphs

Ritam M Mitra

April 2024

1 Introduction

1.1 Graphs

A graph G is a pair of sets (V,E), where V is a finite non-empty set of elements
called vertices, and E is a set of unordered pairs of distinct vertices called edges.
The sets V and E are the vertex-set and the edge-set of G, and are often denoted
by V (G) and E(G), respectively. An example of a graph is shown in Fig. 1.

The number of vertices in a graph is the order of the graph; usually it is
denoted by n and the number of edges by m. Standard notation for the vertex-
set is V = {v1, v2, ..., vn} and for the edge-set is E = {e1, e2, ..., em}. Arbitrary
vertices are frequently represented by u, v, w, ... and edges by e, f,

For convenience, the edge {v, w}is commonly written as vw. We say that
this edge joins v and w and that it is incident with v and w. In this case, v and
w are adjacent vertices, or neighbours. The set of neighbours of a vertex v is
its neighbourhood N(v). Two edges are adjacent edges if they have a vertex in
common. The number of neighbours of a vertex v is called its degree, denoted
by deg v. Observe that the sum of the degrees in a graph is twice the number
of edges. If all the degrees of G are equal, then G is regular, or is k − regular
if that common degree is k. The maximum degree in a graph is often denoted
by ∆.

Figure 1:

1

1.2 Groups

A group is a set G with a binary operation ◦ satisfying the conditions:

• for all g, h, k ∈ G, (g ◦ h) ◦ k = g ◦ (h ◦ k) (associative law);

• there exists an element 1 ∈ G (the identity) such that 1 ◦ g = g ◦ 1 = g
for all g ∈ G;

• for each g ∈ G, there is an element g−1 ∈ G (the inverse of g) such that
g ◦ g−1 = g−1 ◦ g = 1;

• for all g, h ∈ G, g ◦ h = h ◦ g (commutative law) then the group G is
Abelian (or commutative);

Groups are important here because the set of automorphisms of a graph
(with the operation of composition of mappings) is a group. In many cases,
the group encodes important information about the graph; and in general, the
use of symmetry can be used to do combinatorial searches in the graph more
efficiently.

1.2.1 Permutation Group

A permutation of the set Ω is a bijective mapping g : Ω → Ω. We write the
image of the point v ∈ Ω under the permutation g as vg, rather than g(v). The
composition g1g2 of two permutations g1 and g2 is the permutation obtained by
applying g1 and then g2 that is,

v(g1g2) = (vg1)g2 for each v ∈ Ω.

A permutation group on Ω is a set G of permutations of Ω satisfying the
following conditions:

• G is closed under composition: if g1, g2 ∈ G then g1g2 ∈ G;

• G contains the identity permutation 1, defined by v1 = v for v ∈ Ω;

• G is closed under inversion, where the inverse of g is the permutation g−1

defined by the rule that vg−1 = w if wg = v;

The degree of the permutation group G is the cardinality of the set Ω. The
simplest example of a permutation group is the set of all permutations of a
set Ω. This is the symmetric group, denoted by Sym(Ω). More generally, an
action of G on Ω is a homomorphism from G to Sym(Ω). The image of the
homomorphism is then a permutation group. The action is faithful if its kernel
is {1} – that is, if distinct group elements map to distinct permutations. If the
action is faithful, then G is isomorphic to a permutation group on Ω.

2

2 Automorphism groups of graphs

Let G = (V,E) be a simple graph, possibly directed and possibly containing
loops. An automorphism of G is a permutation g of V with the property that
{vg, wg} is an edge if and only if {v, w} is an edge – or, if G is a digraph, that
(vg, wg) is an arc if and only if (v, w) is an arc. Now the set of all automorphisms
of G is a permutation group Aut(G), called the automorphism group of G.

The definition of an automorphism of a multigraph is a little more compli-
cated. The most straightforward approach is to interpret a multigraph as a
weighted graph. If av,w denotes the multiplicity of vw as an edge of G, then an
automorphism is a permutation of V satisfying avg,wg = av,w. Again, the set of
automorphisms is a group.

Theorems

• A simple undirected graph and its complement have the same automor-
phism group.

• The automorphism group of the complete graph Kn or the null graph Nn

is the symmetric group Sn.

• The 5-cycle C5 has ten automorphisms, realized geometrically as the ro-
tations and reflections of a regular pentagon.

This last group is the dihedral group D10. More generally, Aut(Cn) is the
dihedral group D2n, for n ≥ 3.

2.1 Algorithmic aspects

Two algorithmic questions that arise from the above definitions are graph iso-
morphism and finding the automorphism group. The first is a decision problem.

Graph isomorphism
Instance: Graphs G and H
Question: Is G ∼= H?

The second problem requires output. Note that a subgroup of Sn may be
superexponentially large in terms of n, but that any subgroup has a generating
set of size O(n), which specifies it in polynomial space.

Automorphism group
Instance: A graph G
Output: generating permutations for Aut(G).

These two problems are closely related: indeed, the first has a polynomial
reduction to the second. For, suppose that we are given two graphs G and H.
By taking complements if necessary, we may assume that both G and H are
connected.

Now suppose that we can find generating permutations for Aut(K), where
K is the disjoint union of G and H. Then G and H are isomorphic if and only
if some generator interchanges the two connected components.

3

Conversely, if we can solve the graph isomorphism problem, we can at least
check whether a graph has a non-trivial automorphism, by attaching distinctive
‘gadgets’ at each vertex and checking whether any pair of the resulting graphs
are isomorphic.

3 Graph Isomorphism and Automorphism Groups

Recall that two graphs G1 and G2 are isomorphic if there is a re-numbering of
vertices of one graph to get the other, or in other words, there is an automor-
phism of one graph that sends it to the other. And clearly, Aut(G) ≤ Sn, the
symmetric group on n objects, which represent the permutation group on the
vertices. And since it is a subgroup of the permutation group, |Aut(G)| ≤ n!

Of course, providing the entire automorphism group as output would take
exponential time but what about a small generating set? Which then leads us
to, does there exist a small generating set?

Theorem. With Graph-Iso as an oracle, there is a polynomial time algo-
rithm for Graph-Aut and vice-versa.

First we shall show that we can solve Graph-Iso with Graph-Aut as an
oracle. We are given two graphs G1 and G2 and we need to create a graph G
using the two such that the generating set of the automorphism group should
tell us if they are isomorphic or not.

Let G = G1 ∪ G2. Suppose additionally we knew that G1 and G2 are
connected, then a single oracle query would be sufficient: if any of the generators
of Aut(G) interchanged a vertex in G1 with one in G2, then connnectivity should
force G1

∼= G2.
But what if they are not connected? We then have this very neat trick:

G1
∼= G2 ⇐⇒ G1

∼= G2. As either G1 or G1 has to be connected, one can check
for connectivity and then ask the appropriate query.

The other direction is a bit more involved. The idea is to see that any group
is a union of cosets. Suppose

H = a1K ∪ a2K ∪ . . . anK.

then {a1, a2, . . . , an} along with a generating set for K form a generating set for
H. Hence once we have a subgroup K with small index, we can then recurse on
K.

Hence we are looking for a tower of subgroups.

Aut(G) = H ≥ H1 ≥ H2 ≥ . . . ≥ Hm = {e}

such that [Hi : Hi+1] is polynomially bounded.
For our graph G, let Aut(G) = H ≤ Sn. We shall use Weilandt’s notation

where iπ denotes the image of i under π. In this notation, composition becomes
simpler: (iπ)τ = iπ.τ .

Define Hi = {π ∈ H : 1π = 1, 2π = 2, . . . iπ = i}. And this gives the tower

H0 = H ≥ H1 ≥ H2 ≥ . . . ≥ Hn−1 = {e}

4

with the additional property that [Hi : Hi+1] ≤ n− i since there are at most
n − i places that i + 1 can go to when the first i are fixed. We need to find to
find the coset representatives.

As H is Aut(G), we can find the coset representatives using queries to the
Graph-Iso subroutine: to find a representative for [H(i) : H(i+1)], make two
copies of G, force the first i vertices to be fixed (by putting identical gadgets on
them in each copy), and for each place j′ that i+ 1 might go to, force i+ 1 to
go to j′, test if a graph isomorphism exists, and continue till an isomorphism is
found.

5

4 References

[1] Algebraic Graph Theory Book by Chris Godsil and Gordon Royle

[2] Topics in Algebraic Graph Theory Lowell W. Beineke, Robin J. Wilson
Cambridge University Press

6

