Automorphism Group of Graphs

Ritam M Mitra

April 2024

1 Introduction

1.1 Graphs

A graph G is a pair of sets (V, E), where V is a finite non-empty set of elements called vertices, and E is a set of unordered pairs of distinct vertices called edges. The sets V and E are the vertex-set and the edge-set of G, and are often denoted by $V(G)$ and $E(G)$, respectively. An example of a graph is shown in Fig. 1.

The number of vertices in a graph is the order of the graph; usually it is denoted by n and the number of edges by m. Standard notation for the vertexset is $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and for the edge-set is $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Arbitrary vertices are frequently represented by u, v, w, \ldots and edges by e, f, \ldots.

For convenience, the edge $\{v, w\}$ is commonly written as $v w$. We say that this edge joins v and w and that it is incident with v and w. In this case, v and w are adjacent vertices, or neighbours. The set of neighbours of a vertex v is its neighbourhood $N(v)$. Two edges are adjacent edges if they have a vertex in common. The number of neighbours of a vertex v is called its degree, denoted by deg v. Observe that the sum of the degrees in a graph is twice the number of edges. If all the degrees of G are equal, then G is regular, or is k-regular if that common degree is k. The maximum degree in a graph is often denoted by Δ.

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& E=\left\{v_{1} v_{2}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4}, v_{4} v_{5}\right\}
\end{aligned}
$$

Fig. 1.

Figure 1:

1.2 Groups

A group is a set G with a binary operation \circ satisfying the conditions:

- for all $g, h, k \in G,(g \circ h) \circ k=g \circ(h \circ k)($ associative law $)$;
- there exists an element $1 \in G$ (the identity) such that $1 \circ g=g \circ 1=g$ for all $g \in G$;
- for each $g \in G$, there is an element $g^{-1} \in G$ (the inverse of g) such that $g \circ g^{-1}=g^{-1} \circ g=1$;
- for all $g, h \in G, g \circ h=h \circ g$ (commutative law) then the group G is Abelian (or commutative);

Groups are important here because the set of automorphisms of a graph (with the operation of composition of mappings) is a group. In many cases, the group encodes important information about the graph; and in general, the use of symmetry can be used to do combinatorial searches in the graph more efficiently.

1.2.1 Permutation Group

A permutation of the set Ω is a bijective mapping $g: \Omega \rightarrow \Omega$. We write the image of the point $v \in \Omega$ under the permutation g as $v g$, rather than $g(v)$. The composition $g_{1} g_{2}$ of two permutations g_{1} and g_{2} is the permutation obtained by applying g_{1} and then g_{2} that is,

$$
v\left(g_{1} g_{2}\right)=\left(v g_{1}\right) g_{2} \text { for each } v \in \Omega
$$

A permutation group on Ω is a set G of permutations of Ω satisfying the following conditions:

- G is closed under composition: if $g_{1}, g_{2} \in G$ then $g_{1} g_{2} \in G$;
- G contains the identity permutation 1 , defined by $v 1=v$ for $v \in \Omega$;
- G is closed under inversion, where the inverse of g is the permutation g^{-1} defined by the rule that $v g^{-1}=w$ if $w g=v$;

The degree of the permutation group G is the cardinality of the set Ω. The simplest example of a permutation group is the set of all permutations of a set Ω. This is the symmetric group, denoted by $\operatorname{Sym}(\Omega)$. More generally, an action of G on Ω is a homomorphism from G to $\operatorname{Sym}(\Omega)$. The image of the homomorphism is then a permutation group. The action is faithful if its kernel is $\{1\}$ - that is, if distinct group elements map to distinct permutations. If the action is faithful, then G is isomorphic to a permutation group on Ω.

2 Automorphism groups of graphs

Let $G=(V, E)$ be a simple graph, possibly directed and possibly containing loops. An automorphism of G is a permutation g of V with the property that $\{v g, w g\}$ is an edge if and only if $\{v, w\}$ is an edge - or, if G is a digraph, that $(v g, w g)$ is an arc if and only if (v, w) is an arc. Now the set of all automorphisms of G is a permutation group $\operatorname{Aut}(G)$, called the automorphism group of G.

The definition of an automorphism of a multigraph is a little more complicated. The most straightforward approach is to interpret a multigraph as a weighted graph. If $a_{v, w}$ denotes the multiplicity of $v w$ as an edge of G, then an automorphism is a permutation of V satisfying $a_{v g, w g}=a_{v, w}$. Again, the set of automorphisms is a group.

Theorems

- A simple undirected graph and its complement have the same automorphism group.
- The automorphism group of the complete graph K_{n} or the null graph N_{n} is the symmetric group S_{n}.
- The 5 -cycle C_{5} has ten automorphisms, realized geometrically as the rotations and reflections of a regular pentagon.

This last group is the dihedral group D_{10}. More generally, $\operatorname{Aut}\left(C_{n}\right)$ is the dihedral group $D_{2 n}$, for $n \geq 3$.

2.1 Algorithmic aspects

Two algorithmic questions that arise from the above definitions are graph isomorphism and finding the automorphism group. The first is a decision problem.

Graph isomorphism
Instance: Graphs G and H
Question: Is $G \cong H$?
The second problem requires output. Note that a subgroup of S_{n} may be superexponentially large in terms of n, but that any subgroup has a generating set of size $O(n)$, which specifies it in polynomial space.

Automorphism group
Instance: A graph G
Output: generating permutations for $\operatorname{Aut}(G)$.
These two problems are closely related: indeed, the first has a polynomial reduction to the second. For, suppose that we are given two graphs G and H. By taking complements if necessary, we may assume that both G and H are connected.

Now suppose that we can find generating permutations for $\operatorname{Aut}(K)$, where K is the disjoint union of G and H. Then G and H are isomorphic if and only if some generator interchanges the two connected components.

Conversely, if we can solve the graph isomorphism problem, we can at least check whether a graph has a non-trivial automorphism, by attaching distinctive 'gadgets' at each vertex and checking whether any pair of the resulting graphs are isomorphic.

3 Graph Isomorphism and Automorphism Groups

Recall that two graphs G_{1} and G_{2} are isomorphic if there is a re-numbering of vertices of one graph to get the other, or in other words, there is an automorphism of one graph that sends it to the other. And clearly, $\operatorname{Aut}(G) \leq S_{n}$, the symmetric group on n objects, which represent the permutation group on the vertices. And since it is a subgroup of the permutation group, $|A u t(G)| \leq n$!

Of course, providing the entire automorphism group as output would take exponential time but what about a small generating set? Which then leads us to, does there exist a small generating set?

Theorem. With Graph-Iso as an oracle, there is a polynomial time algorithm for Graph-Aut and vice-versa.

First we shall show that we can solve Graph-Iso with Graph-Aut as an oracle. We are given two graphs G_{1} and G_{2} and we need to create a graph G using the two such that the generating set of the automorphism group should tell us if they are isomorphic or not.

Let $G=G_{1} \cup G_{2}$. Suppose additionally we knew that G_{1} and G_{2} are connected, then a single oracle query would be sufficient: if any of the generators of $\operatorname{Aut}(G)$ interchanged a vertex in G_{1} with one in G_{2}, then connnectivity should force $G_{1} \cong G_{2}$.

But what if they are not connected? We then have this very neat trick: $G_{1} \cong G_{2} \Leftarrow \Rightarrow \overline{G_{1}} \cong \overline{G_{2}}$. As either G_{1} or $\overline{G_{1}}$ has to be connected, one can check for connectivity and then ask the appropriate query.

The other direction is a bit more involved. The idea is to see that any group is a union of cosets. Suppose

$$
H=a_{1} K \cup a_{2} K \cup \ldots a_{n} K
$$

then $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ along with a generating set for K form a generating set for H. Hence once we have a subgroup K with small index, we can then recurse on K.

Hence we are looking for a tower of subgroups.

$$
\operatorname{Aut}(G)=H \geq H_{1} \geq H_{2} \geq \ldots \geq H_{m}=\{e\}
$$

such that $\left[H_{i}: H_{i+1}\right.$] is polynomially bounded.
For our graph G, let $A u t(G)=H \leq S_{n}$. We shall use Weilandt's notation where i^{π} denotes the image of i under π. In this notation, composition becomes simpler: $\left(i^{\pi}\right)^{\tau}=i^{\pi \cdot \tau}$.

Define $H_{i}=\left\{\pi \in H: 1^{\pi}=1,2^{\pi}=2, \ldots i^{\pi}=i\right\}$. And this gives the tower

$$
H_{0}=H \geq H_{1} \geq H_{2} \geq \ldots \geq H_{n-1}=\{e\}
$$

with the additional property that $\left[H_{i}: H_{i+1}\right] \leq n-i$ since there are at most $n-i$ places that $i+1$ can go to when the first i are fixed. We need to find to find the coset representatives.

As H is $\operatorname{Aut}(G)$, we can find the coset representatives using queries to the Graph-Iso subroutine: to find a representative for $\left[H^{(i)}: H^{(i+1)}\right]$, make two copies of G, force the first i vertices to be fixed (by putting identical gadgets on them in each copy), and for each place j^{\prime} that $i+1$ might go to, force $i+1$ to go to j^{\prime}, test if a graph isomorphism exists, and continue till an isomorphism is found.

4 References

[1] Algebraic Graph Theory Book by Chris Godsil and Gordon Royle
[2] Topics in Algebraic Graph Theory Lowell W. Beineke, Robin J. Wilson Cambridge University Press

