# Automorphism Group of Graphs 

Ritam M Mitra

Indian Statistical Institute
19th April, 2024

## Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E}) ; \mathrm{V}=$ set of vertices; $\mathrm{E}=$ set of edges
- order of $G=V=n$


Figure: $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\} \mathrm{E}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{ad}, \mathrm{be}, \mathrm{cf}, \mathrm{bf}\}$

## Permutation Group

- A permutation of the set $\Omega$ is a bijective mapping $g: \Omega \rightarrow \Omega$
- The composition $g_{1} g_{2}$ of two permutations $g_{1}$ and $g_{2}$ is

$$
v\left(g_{1} g_{2}\right)=\left(v g_{1}\right) g_{2} \text { for each } v \in \Omega
$$

- $G$ is closed under composition: if $g_{1}, g_{2} \in G$ then $g_{1} g_{2} \in G$;
- $G$ contains the identity permutation 1 , defined by $v 1=v$ for $v \in \Omega$;
- $G$ is closed under inversion, where the inverse of $g$ is the permutation $g^{-1}$ defined by the rule that $v g^{-1}=w$ if $w g=v$;


## Automorphism of graphs

## Definition

An automorphism on a graph $G$ is a bijection $\phi: V(G) \rightarrow V(G)$ such that $u v \in E(G)$ if and only if $\phi(u) \phi(v) \in E(G)$.

Note that graph automorphisms preserve adjacency. In layman terms, a graph automorphism is a symmetry of the graph.

## Example



Figure: Graph G

## Example

One automorphism switches vertices $a$ and $c$.


Figure: $\alpha=(a, c)(b)(d)$

## Example

One automorphism switches vertices $b$ and $d$.


Figure: $\beta=(a)(b, d)(c)$

## Example

The final automorphism switches vertices $a$ and $c$ and also switches $b$ and d.


Figure: $\alpha \beta=(a, c)(b, d)$

## The Automorphism Group

## Definition

Let $\operatorname{Aut}(\mathrm{G})$ denote the set of all automorphisms on a graph G. Note that this forms a group under function composition.

- Aut $(G)$ is closed under function composition.
- Function composition is associative on $\operatorname{Aut}(G)$.
- There is an identity element in $\operatorname{Aut}(G)$. This is mapping $e(v)=v$ for all $v \in V(G)$.
- For every $\sigma \in \operatorname{Aut}(G)$, there is an inverse element $\sigma^{-1} \in \operatorname{Aut}(G)$. Since $\sigma$ is a bijection, it has an inverse. By definition, this is an automorphism.


## Facts about graph automorphisms

- Graph automorphisms are degree preserving. In other words, for all $u \in V(G)$ and for all $\phi \in \operatorname{Aut}(G), \operatorname{deg}(u)=\operatorname{deg}(\phi(u))$.
- Graph automorphisms are distance preserving. In other words, for all $u, v \in V(G)$ and for all $\phi \in \operatorname{Aut}(G), d(u, v)=d(\phi(u), \phi(v))$.
- The automorphism group of $G$ is equal to the automorphism group of the complement $\bar{G}$.


## Dihedral Group

The 5-cycle $C_{5}$ has ten automorphisms, realized geometrically as the rotations and reflections of a regular pentagon.


## Graph Isomorphism

## Definition

There exists a function ' $f$ ' from vertices of $G_{1}$ to vertices of $G_{2}$
[ $\left.f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)\right]$, such that
(i) $f$ is a bijection (both one-one and onto)
(ii) $f$ preserves adjacency of vertices, i.e., if the edge $\{u, v\} \in G_{1}$, then the edge $\{f(u), f(v)\} \in G_{2}$, then $G_{1} \equiv G_{2}$.

## Example



Figure: $f$ is an isomorphism

## Algorithmic questions

Question 1
Graph isomorphism
Instance: Graphs $G$ and $H$
Question: Is $G \cong H$ ?

## Question 2

Automorphism group
Instance: A graph G
Output: generating permutations for $\operatorname{Aut}(G)$.

## Reduction

## Theorem

With Graph-Iso as an oracle, there is a polynomial time algorithm for Graph-Aut and vice-versa.

## vice-versa part

- given two graphs $G_{1}$ and $G_{2}$
- Create $G=G_{1} \cup G_{2}$
- $G_{1}$ and $G_{2}$ are connected
- if any of the generators of $\operatorname{Aut}(G)$ interchanged a vertex in $G_{1}$ with one in $G_{2}$, then connnectivity should force $G_{1} \cong G_{2}$
- if not $G_{1}$ and $G_{2}$ connected
- $G_{1} \cong G_{2} \Leftarrow \overline{G_{1}} \cong \overline{G_{2}}$
- either $G_{1}$ or $\overline{G_{1}}$ has to be connected


## Conclusion

- Constructing the automorphism group is at least as difficult (in terms of its computational complexity) as solving the graph isomorphism problem.
- Similar to the graph isomorphism problem, it is unknown whether it has a polynomial time algorithm or it is NP-complete.


## Questions...?



