Groups in Molecular Symmetry

Roshni Mondal
JRF in CS (CSCR)

What is Molecular Symmetry?

* It is a fundamental concept of chemistry that allows to predict or explain many of a molecule's chemical properties.
* important aspect of molecular symmetry is the concept of symmetric operation.

What is Symmetry of Element?

It's a criteria for defining a molecule is symmetry or not.
There are four types of element of symmetry. a) Identity (E).
b) Rotation $\left(C_{n}\right)$ [where n denotes order of axis]
c) reflection plane $\left(\sigma_{v}\right)$
d) rotational-reflection plane $\left(\sigma_{v}^{\prime}\right)$

Symmetry elements form a group

Here we take order of axis is 2 . So, $G=\left(\left\{E, C_{2}, \sigma_{v}, \sigma_{v}^{\prime}\right\}^{*}\right)$. Now we have made a multiplication table.
From the multiplication table we can say-

- G is closed.
- Let's take a, b, c in G such that $\forall a, b, c$ there exist $(a * b)^{*} c=a *(b * c)$. Hence associative.
- Identity exist
- For every element of the group there is an inverse.
- $\quad \forall \mathrm{a}, \mathrm{b}$ of $\mathrm{G}, \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$. Hence commutative.

Therefore G is a Commutative Group.

$*$	E	C_{2}	σ_{v}	σ_{v}^{\prime}
E	E	C_{2}	σ_{v}	σ_{v}^{\prime}
C_{2}	C_{2}	E	σ_{v}^{\prime}	σ_{v}
σ_{v}	σ_{v}	σ_{v}^{\prime}	E	C_{2}
σ_{v}^{\prime}	σ_{v}^{\prime}	σ_{v}	C_{2}	E

Continue

$$
\begin{aligned}
& E * E=E ; E * E * \ldots * E=E \\
& C_{2}{ }^{*} C_{2}=E ; C_{2}{ }^{*} C_{2}{ }^{*} C_{2}=C_{2} ; \text { therefore } C_{2}{ }^{*} C_{2} \ldots{ }^{*} C_{2}\left\{\begin{array}{l}
E \text { when } n \text { is even } \\
C_{2} \text { when } n \text { is odd }
\end{array}\right.
\end{aligned}
$$

$\sigma_{v} * \sigma_{v}=\mathrm{E} ; \sigma_{v}{ }^{*} \sigma_{v} * \sigma_{v}=\sigma_{v}$;therefore $\sigma_{v} * \sigma_{v} \ldots \sigma_{v}\left\{\left\{\begin{array}{l}\mathrm{E} \text { when } \mathrm{n} \text { is even } \\ \sigma_{v} \text { when } n \text { is odd }\end{array}\right.\right.$
$\sigma_{v}^{\prime} * \sigma_{v}^{\prime}=\mathrm{E} ; \sigma_{v}^{\prime}{ }^{*} \sigma_{v}^{\prime}{ }^{*} \sigma_{v}^{\prime}=\sigma_{v}^{\prime}$; therefore $\sigma_{v}^{\prime}{ }^{*} \sigma_{v}^{\prime} \ldots{ }^{*} \sigma_{v}^{\prime}=\left\{\begin{array}{l}E \text { when } \mathrm{n} \text { is even } \\ \sigma_{v}^{\prime} \text { when } \mathrm{n} \text { is odd }\end{array}\right.$
Therefore no generator exists.
Hence $G=\left(\left\{E, C_{2}, \sigma_{v}, \sigma_{v}^{\prime}\right\}^{*} *\right)$ is not a cyclic group.

Order and Class of the Group

Order:

The total number of symmetry operation needed to get the original form is called order of the group.

Class:

A set of element in a group that are conjugate to one another are said to form a class of a group.

Matrix representation of symmetry elements

Identity:

$E(x, y, z) \rightarrow(x, y, z)$
$E\left(\begin{array}{l}X \\ Y \\ z\end{array}\right) \rightarrow\left(\begin{array}{l}X \\ Y \\ z\end{array}\right)=\left(\begin{array}{l}1 . X+0 . Y+0 . Z \\ 0 . X+1 . Y+0 . Z \\ 0 . X+0 . Y+1 . Z\end{array}\right)$
$E=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Now, character = sum of principal diagonal element.
If character $=\mathrm{n}$ for n dimension then matrix is identical.

Continue

Center of inversion:

$I(x, y, z) \rightarrow(-x,-y,-z)$
I $\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right) \rightarrow\left(\begin{array}{c}-X \\ -Y \\ -Z\end{array}\right)=\left(\begin{array}{c}-1 . X+0 . Y+0 . Z \\ 0 . X-1 . Y+0 . Z \\ 0 . X+0 . Y-1 . Z\end{array}\right)$
$\mathrm{I}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$
Now, character = sum of principal diagonal element.
If character = -n for n dimension then center of inversion exists.

Continue...

Reflection plane:

$\sigma_{x z}(x, y, z) \rightarrow(x,-y, z)$
$\sigma_{x Z}\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right) \rightarrow\left(\begin{array}{c}X \\ -Y \\ Z\end{array}\right)=\left(\begin{array}{c}1 . X+0 . Y+0 . Z \\ 0 . X-1 . Y+0 . Z \\ 0 . X+0 . Y+1 . Z\end{array}\right)$
$\sigma_{x z}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
now character = sum of principal diagonal element.
If character $=1$ for all plane then it's symmetry.

Continue...

Rotational-reflexive plane:

$\sigma_{x y}^{\prime}(x, y, z) \rightarrow(-x,-y, z)$
$\sigma_{x y}^{\prime}\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right) \rightarrow\left(\begin{array}{c}-X \\ -Y \\ Z\end{array}\right)=\left(\begin{array}{c}-1 . X+0 . Y+0 . Z \\ 0 . X-1 . Y+0 . Z \\ 0 . X+0 . Y+1 . Z\end{array}\right)$
$\sigma_{x y}^{\prime}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
now character = sum of principal diagonal element.
If character $=-1$ for all plane then it's asymmetry.

Conclusion

Group theory is a very fundamental thing in mathematics which are not bounded in theory but we can use it in various field to understand that subject in deeper manner. Here I am trying to understand the molecular symmetry using group theory in two dimensional space.

Thank you

