
Elements of Algebraic Structures

Homomorphic Encryption
An Introduction from a Point of View of Algebra

Sandeep Chatterjee

M.Tech. Computer Science

19th April 2024

Indian Statistical Institute



Abstract

In this presentation, a gentle introduction to homomorphic encryption is presented, a cutting-

edge cryptographic technique with profound implications for data privacy and computational

security. Through an exploration from an algebraic perspective, we will delve into the fundamen-

tal principles underlying homomorphic encryption, elucidating its mechanisms and capabilities.

By examining its algebraic foundations, we aim to demystify this powerful cryptographic tool

and shed light on its practical applications.

In this write-up, we explore the theoretical underpinnings and practical implementations of

homomorphic encryption, beginning with an overview of algebraic homomorphisms and their

relevance to cryptography. It traces the historical development of homomorphic encryption,

from the pioneering work of Rivest, Adleman, and Dertouzos to modern schemes like the Paillier

cryptosystem. The challenges and advancements in fully homomorphic encryption, exemplified

by Craig Gentry’s seminal work, are discussed, highlighting its transformative potential despite

computational complexities. This paper concludes by emphasizing the ongoing research in fully

homomorphic encryption, reflecting its significance in contemporary cryptography.

Click for the presentation

i

https://www.canva.com/design/DAGCLIVvpB8/I-v8-csnIZi1TyLmSTiCWQ/view?utm_content=DAGCLIVvpB8&utm_campaign=designshare&utm_medium=link&utm_source=editor


Contents

0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Preliminaries 2

1.1 Algebraic Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Definition (Group Homomorphism) . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Definition (Ring Homomorphism) . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Some Useful Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Homomorphisms and Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 History, Developement & Implementation 4

2.1 On Data Banks and Privacy Homomorphisms . . . . . . . . . . . . . . . . . . . . 4

2.2 Blind Signatures for Untraceable Payments . . . . . . . . . . . . . . . . . . . . . 4

2.3 Example: The RSA Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 ElGamal Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1 ElGamal Problem: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Paillier Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.2 Paillier Example: E-Voting . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Fully Homomorphic Encryption 9

3.1 Fully Homorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Craig Gentry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Challanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References 12

ii



CONTENTS CONTENTS

A Number Theory 13

A.1 Euler’s Totient Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.2 Discrete Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.3 Public-Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iii



CONTENTS 0.1. Motivation

0.1 Motivation

Traditional encryption methods excel at data security but present a fundamental challenge

to computational processes. Encrypting all inputs using conventional techniques renders sub-

sequent operations ineffective due to the loss of underlying structure. This underscores the

pressing demand for inventive approaches harmonizing data privacy and computational func-

tionality. Enter homomorphic encryption, a revolutionary cryptographic paradigm empowering

computations directly on encrypted data sans decryption, offering a transformative solution to

this problem

In today’s interconnected digital landscape, preserving privacy while harnessing the advance-

ments of machine learning and algorithms. Homomorphic encryption offers a groundbreaking

solution by allowing computations on encrypted data without compromising its confidentiality.

Consider the scenario of spam classification in email systems: With homomorphic encryption,

service providers can analyze encrypted email content to detect spam, safeguarding user privacy

while effectively filtering unwanted messages. This exemplifies the transformative potential of

homomorphic encryption in enabling secure, privacy-preserving data processing across various

domains.
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Chapter 1

Preliminaries

1.1 Algebraic Homomorphisms

1.1.1 Definition (Group Homomorphism)

Let (G, ∗) and (H, ⋄) be groups. The map ϕ : G → H is a homomorphism if and only if:

ϕ(x ∗ y) = ϕ(x) ⋄ ϕ(y) ∀x, y ∈ G

1.1.2 Definition (Ring Homomorphism)

Let R and S be rings with addition and multiplication. The map ϕ : R → S is a homomorphism

if and only if:

1. ϕ is a group homomorphism on the additive groups (R,+) and (S,+):

ϕ(a+ b) = ϕ(a) + ϕ(b), ∀a, b ∈ R

2. ϕ preserves multiplication:

ϕ(xy) = ϕ(x) · ϕ(y), ∀x, y ∈ R

1.2 Some Useful Properties

1. We have the inclusion homomorphism ι : Z → Q, which sets ι(n) = n. This map clearly

preserves both addition and multiplication.

2. Consider the map ϕ : Z → Zn sending k to k. We’ve seen that this is a homomorphism of

additive groups, and can easily check that multiplication is preserved. Indeed,

ϕ(a) = ϕ(1 + 1 + · · ·+ 1) = ϕ(1) + ϕ(1) + · · ·+ ϕ(1) = aϕ(1) = a.

2



Chapter 1. Preliminaries 1.3. Homomorphisms and Cryptography

Notice that every element in Z can be written as a sum of many copies of 1. Then we

were able to determine what the homomorphism does simply by knowing ϕ(1).

3. The evaluation map ek is a function from R[x] to R. For any polynomial f ∈ R[x] and

k ∈ R, we set ek(f) = f(k). This is a ring homomorphism! Let f(x) = anx
n + · · ·+ a0x

0

and g(x) = bnx
n + · · · + b0x

0, where the ai, bi ∈ R. (We’ll also allow leading coefficients

to be zero in order to make it easy to add f and g formally.) We then check the ring

homomorphism conditions: since we know that ek is an additive homomorphism, we only

need to check that it is multiplicative on monomials. But that’s easy:

ek((anx
n)(bmxm)) = ek(abx

n+m) = abkn+m = ek(anx
n)ek(bmxm).

1.3 Homomorphisms and Cryptography

Homomorphisms play a significant role in encryption technique to enable computations to be

performed directly on encrypted data without the need for decryption, thereby preserving the

confidentiality of sensitive information. Homomorphic encryption finds applications in various

domains, including e-cash, e-voting, private information retrieval, and cloud computing, where

privacy-preserving computation is paramount.

For over 30 years, achieving fully homomorphic encryption, has been a major goal in cryptog-

raphy. The breakthrough came in 2009 when Craig Gentry proposed the first-ever fully homo-

morphic encryption system. Prior to this milestone, encryption systems capable of preserving

computations under a single operation had been utilized for decades, laying the groundwork for

the development of more advanced cryptographic protocols and systems.
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Chapter 2

History, Developement &
Implementation

2.1 On Data Banks and Privacy Homomorphisms

• Rivest, Adleman, and Dertouzos, Rivest et al. 1978

• Introduced the idea of ”Privacy Homomorphisms”

• Introduced four possible encryption functions (RSA was one of them)

They illustrated its practical implications, such as a loan company encrypting sensitive data

stored in a time-sharing service, highlighting the feasibility of privacy-preserving techniques.

2.2 Blind Signatures for Untraceable Payments

• David Chaum,

• Calls for a payment system with:

– Anonymity of payment , Proof of payment

• Analogy to secure voting

– Place vote in a carbon envelope The signer can then sign the envelope, consequently

signing the vote without ever knowing what the vote is

• Paper doesn’t gives any solution but introduces the problem with analogies highlights

the various use cases. Although no mention of a private homomorphism, the paper helps

introduce the need for secure voting as well as the relationship between e-cash and e-

voting.
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Chapter 2. History, Developement & Implementation 2.3. Example: The RSA Cryptosystem

2.3 Example: The RSA Cryptosystem

Definition (RSA): Let n = pq where p and q are primes. Pick a and b such that ab ≡ 1

(mod ϕ(n)). n and b are public while p, q, and a are private.

eK(x) = xb mod n

dK(y) = ya mod n

The Homomorphism: Suppose x1 and x2 are plaintexts. Then,

eK(x1)eK(x2) = xb1 · xb2 mod n = (x1x2)
b mod n = eK(x1x2)

2.4 ElGamal Cryptosystem

Definition (ElGamal): Let p be a prime and pick α ∈ Z∗
p such that α is a generator of Z∗

p.

Pick a and β such that β ≡ αa (mod p). p, α, and β are public; a is private. Let r ∈ Zp−1 be

a secret random number. Boneh and Shoup 2023 Then, eK(x, r) = (αr mod p, x · βr mod p)

The Homomorphism: Let x1 and x2 be plaintexts. Then,

eK(x1, r1) · eK(x2, r2) = (αr1 mod p, x1 · βr1 mod p) · (αr2 mod p, x2 · βr2 mod p)

= (αr1 · αr2 mod p, x1 · βr1 · x2 · βr2 mod p)

= (αr1+r2 mod p, x1 · x2 · βr1+r2 mod p)

= eK(x1 · x2, r1 + r2)

2.4.1 ElGamal Problem:

This homomorphism is multiplicative. E-cash and e-voting would benefit from an additive

homomorphism.

One solution: Modify ElGamal. Put the plaintext in the exponent. If we modify ElGamal so

that

eK(x, r) = (αr mod p, αx · βr mod p)

5



2.5. Paillier Cryptosystem Chapter 2. History, Developement & Implementation

Then the homomorphism is

eK(x1, r1) · eK(x2, r2) = (αr1 mod p, αx1 · βr1 mod p) · (αr2 mod p, αx2 · βr2 mod p)

= (αr1 · αr2 mod p, αx1 · βr1 · αx2 · βr2 mod p)

= (αr1+r2 mod p, αx1 + x2 · βr1+r2 mod p)

= eK(x1 + x2, r1 + r2)

The problem with this modification is that dK = αx, introducing the discrete logarithm problem

into the decryption. For large enough texts, this becomes impractical.

We would like another cryptosystem which takes advantage of this additive property of expo-

nentiation but does so without extra decryption time.

Solution: the Paillier Cryptosystem.

2.5 Paillier Cryptosystem

• Introduced by Pascal Paillier in ”Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes,” Paillier 1999

• Probabilistic, asymmetric algorithm

• Based on the decisional composite residuosity assumption: Given composite n and integer

z, it is hard to determine if y exists such that ∃?y : z ≡ yn (mod n2)

• Homomorphic and self-blinding

• Extended by Damgard and Jurik in 2001 , modulo n2 ⇒ modulo ns+1

2.5.1 Definition

Pick two large primes p and q and let n = pq. Let λ denote the Carmichael function, that is,

λ(n) = lcm(p − 1, q − 1). Pick random g ∈ Z∗
n such that L(gλ mod n2) is invertible modulo n

(where L(u) = u−1 mod n). n and g are public; p and q (or λ) are private. For plaintext x and

resulting ciphertext y, select a random r ∈ Z∗
n. Then,

eK(x, r) = gxrn mod n2

dK(y) = L
(
yλ mod n2

)
· L

(
gλ mod n2

)−1
mod n

6



Chapter 2. History, Developement & Implementation 2.5. Paillier Cryptosystem

eK(x1, r1) · eK(x2, r2) = eK(x1 + x2, r1 + r2)

2.5.2 Paillier Example: E-Voting

Suppose Soumik , Rajdeeep and Sandeep are running in an election. Each candidate is repre-

sented by a unique encrypted value. For instance, ”01” represents Sandeep , ”10 00” represents

Rajdeep, and ”10 00 00” represents Soumik. Only 6 people voted in the election, and the results

are tabulated below:

Vote Soumik Rajdeeep Sandeep

1 ✓ → 00 00 01 = 1

2 ✓ → 00 01 00 = 4

3 ✓ → 00 01 00 = 4

4 ✓ → 00 00 01 = 1

5 ✓ → 01 00 00 = 16

6 ✓ → 00 00 01 = 1

Let p = 5 and q = 7. Then n = 35, n2 = 1225, and λ = 12. g is chosen to be 141. For the first

vote x1 = 1, r is randomly chosen as 4. Then,

eK(x1, r1) = eK(1, 4) = 1411 · 435 mod 1225 = 141 · 324 = 359 mod 1225

All votes, r values, and resulting encryptions are shown below:

x r eK(x, r)

1 4 359

4 17 173

4 26 486

1 12 1088

16 11 541

1 32 163

In order to sum the votes, we multiply the encrypted data modulo n2:

359 · 173 · 486 · 1088 · 541 · 163 mod 1225 = 983

We then decrypt: L(yλ mod n2) = L(98312 mod 1225) = 36−1 mod 35 = 1

L(gλ mod n2) = L(14112 mod 1225) = 456−1 mod 35 = 13

7



2.6. Security Notions Chapter 2. History, Developement & Implementation

dK(y) = L(yλ mod n2) · L(gλ mod n2)

= 1 · 13−1 mod 35 = 27

We convert 27 to (01 02 03) for the final results. So, Sandeep is the winner.

2.6 Security Notions

Are homomorphic encryptions secure? Or are we losing anything in trade of these features?

Homomorphic encryption is malleable by design. A malleable cryptosystem is one in which any-

one can intercept a ciphertext, transform it into another ciphertext, and then decrypt that into

a plaintext that makes sense. Malleability is generally considered undesirable in a cryptosystem.

”Security” depends on the attack model and goal for rigorous cryptanalysis. In basic models

of simple adversaries such as Cipher-only attack or Known-plaintext attack, it is as secure as

normal encryption.

Figure 2.1: Malleability

Homomorphic systems should be malleable. Maybe you want to build a system that simply

adds exclamation marks to whatever you send your friend. But you don’t want the system to

know what you’re sending your friend; that’s a secret. Malleable systems allow for multiple

parties, especially in cloud-based environments, to operate on data without ever exposing it.
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Chapter 3

Fully Homomorphic Encryption

Homomorphic in the name refers to homomorphism in algebra: the encryption and decryption

functions can be thought of as homomorphisms between plaintext and ciphertext spaces. En-

cryption with an additional evaluation capability for computing over encrypted data without

access to the secret key. The result of such a computation remains encrypted. It includes

multiple types of encryption schemes that can perform different classes of computations with

different capabilities.

Scheme Type Capability and Description

Partially homomorphic encryption Supports evaluation of circuits con-

sisting of only one type of gate, e.g.,

addition or multiplication.

Somewhat homomorphic encryption Can evaluate multiple types of

gates, but only for a subset of cir-

cuits.

Fully homomorphic encryption (FHE) Allows evaluation of arbitrary cir-

cuits composed of multiple types of

gates of unbounded depth and is

the strongest notion of homomor-

phic encryption.

• Up until above, the homomorphic systems described have been partially homomorphic

(PHE). They preserve the structures of multiplication or division, but cannot do both

• The additive and multiplicative preservation of a Ring Homomorphism modulo 2 directly

correspond to the XOR and AND operations of a circuit

9



3.1. Fully Homorphic Encryption Chapter 3. Fully Homomorphic Encryption

• Applications:

– Private queries on search engines - The search engine would be able to return en-

crypted data with out every decrypting the query

– Cloud Computing - Storing encrypted data on the cloud is seemingly useless; no

manipulation of the data can be obtained with out allowing the cloud access and/or

decrypting the data off the cloud

3.1 Fully Homorphic Encryption

Fully homomorphic systems are homomorphic systems in which any kind of mathematical op-

eration can be performed on the cipher text. Fully homomorphic systems do exist today, and

their optimizations since 2009 have made them practical for some applications. Craig Gentry

was the first to suggest that they could be theoretically possible. He was able to create a system

that was homomorphic in two ways, and those two ways allowed full homomorphism.

3.1.1 Craig Gentry

Centers around a function which introduces a certain level of noise into the encryption. Each op-

eration on the ciphertext results in compounding noise, resolved with the bootstrapability of the

encryption. Each re-encryption cuts down the noise. Analogy to Alice’s jewelry shop. Involves

operations on Ideal Lattices. Allows for less complex circuit implementation, corresponding to

the structure of Rings.Gentry 2010

Gentry uses the analogy of a jewelry shop owner in his thesis to describe why fully homomor-

phic systems should be, and are, possible. Imagine that Alice is a jewelery store owner. She

has employees that assemble products from raw materials like diamonds and gold. But, she’s

worried about the possibility of theft. So, she designs boxes that have gloves attached to them.

Employees can stick their hands into the box to assemble the products, but they cannot take

anything out of the box because only Alice has the key. So, Alice’s employees can do operations

on the secure data (the jewelry) without ever having the possibility of taking that secure data

out.

3.1.2 Challanges

Gentry’s system incorporates an amount of noise into the cryptographic process. Each succes-

sive encryption introduces more noise into the system, which is why Gentry’s initial design is

10



Chapter 3. Fully Homomorphic Encryption 3.1. Fully Homorphic Encryption

impractical (though it was later improved upon). It is impractical to use noise because even-

tually the system needs to be restarted because the added noise makes the entire system much

slower. This system relies on ideal Lattice Based Cryptography to simplify much of the system’s

design. Mattsson 2021

However, the combination of the noise production followed by the noise reduction makes the

scheme completely impractical. Complexity grows as more and more operations are performed

(inherent limitation of the algorithm). Gentry has stated that in order to perform one search on

Google using this encryption, the amount of computations needed would increase by a trillion.

More schemes have been introduced to try and decrease this complexity, but all rely on the

same principles. Despite this impracticality, Gentry’s discovery is an amazing breakthrough

in cryptography and proves that (at least theoretical) fully homomorphic encryption schemes

exist.

Conclusion

In conclusion, homomorphic encryption represents a remarkable advancement in the field of

cryptography, offering the tantalizing prospect of performing computations on encrypted data

without compromising privacy. While challenges such as noise accumulation and computational

complexity persist, the theoretical underpinnings and practical applications of homomorphic

encryption continue to drive innovation and research in the field.

The existence of fully homomorphic encryption schemes, as demonstrated by pioneering work

such as that of Craig Gentry, underscores the boundless possibilities and enduring relevance of

cryptography in safeguarding privacy and enabling secure computation in an increasingly inter-

connected world. As we look to the future, further advancements in homomorphic encryption

techniques, alongside complementary developments in areas such as post-quantum cryptography

and secure multi-party computation, hold promise for addressing the remaining limitations and

expanding the practical utility of this transformative technology. It is an open area of research,

with ongoing efforts focused on achieving fully homomorphic encryption, where computations

of arbitrary complexity can be performed

In the pursuit of a more secure and privacy-preserving digital society, homomorphic encryption

stands as a beacon of innovation and hope, offering a path forward towards realizing the vision

of secure computation over encrypted data.
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Appendix A

Number Theory

A.1 Euler’s Totient Function

In number theory, Euler’s totient function counts the positive integers up to a given integer n

that are relatively prime to n. It is written using the Greek letter phi as φ(n) or ϕ(n), and may

also be called Euler’s phi function. In other words, it is the number of integers k in the range

1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this

form are sometimes referred to as totatives of n.

For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively

prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since gcd(9, 3) =

gcd(9, 6) = 3 and gcd(9, 9) = 9. Therefore, ϕ(9) = 6. As another example, ϕ(1) = 1 since for

n = 1 the only integer in the range from 1 to n is 1 itself, and gcd(1, 1) = 1.

Euler’s totient function is a multiplicative function, meaning that if two numbers m and n are

relatively prime, then ϕ(mn) = ϕ(m)ϕ(n). This function gives the order of the multiplicative

group of integers modulo n (the group of units of the ring Z/nZ). It is also used for defining

the RSA encryption system.

A.2 Discrete Logarithm

In mathematics, for given real numbers a and b, the logarithm logb a is a number x such that

bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete

logarithm logb a is an integer k such that bk = a. In number theory, the more commonly used

term is index: we can write x = indra (mod m) (read ”the index of a to the base r modulo

m”) for rx ≡ a (mod m) if r is a primitive root of m and gcd(a,m) = 1.

13



A.3. Public-Key Cryptography Chapter A. Number Theory

Discrete logarithms are quickly computable in a few special cases; however, no efficient method

is known for computing them in general.

Definition: Let G be any group. Denote its group operation by multiplication and its identity

element by 1. Let b be any element of G. For any positive integer k, the expression bk denotes

the product of b with itself k times. Similarly, let b−k denote the product of b−1 with itself k

times. For k = 0, the kth power is the identity: b0 = 1. Let a also be an element of G. An

integer k that solves the equation bk = a is termed a discrete logarithm (or simply logarithm,

in this context) of a to the base b. One writes k = logb a.

A.3 Public-Key Cryptography

Public-Private keys, they are used in asymmetric cryptography. In these systems each key

pair consists of a public key known to all, and a corresponding private key which is secret to

the reciever. Key pairs are generated with key generation algorithms based on mathematical

problems termed one-way functions. Security of public-key cryptography depends on keeping

the private key secret; the public key can be openly distributed without compromising security.

In a public-key encryption system, anyone with a public key can encrypt a message, yielding a

ciphertext, but only those who know the corresponding private key can decrypt the ciphertext

to obtain the original message.

For example, a journalist can publish the public key of an encryption key pair on a web site

so that sources can send secret messages to the news organization in ciphertext. Only the

journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the

sources’ messages—an eavesdropper reading email on its way to the journalist cannot decrypt

the ciphertexts. However, public-key encryption does not conceal metadata like what computer

a source used to send a message, when they sent it, or how long it is. Public-key encryption on

its own also does not tell the recipient anything about who sent a message—it just conceals the

content of a message in a ciphertext that can only be decrypted with the private key.

In a digital signature system, a sender can use a private key together with a message to create a

signature. Anyone with the corresponding public key can verify whether the signature matches

the message, but a forger who does not know the private key cannot find any message/signature

pair that will pass verification with the public key.
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