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Abstract Graph theory serves as a rich domain for exploring abstract
algebraic concepts, particularly concerning graph isomorphism, equivalence
classes, and automorphisms. This write-up delves into the fundamental
principles of abstract algebra applied to graph theory, elucidating the intricate
interplay between these concepts. It elucidates the significance of identifying
structurally equivalent graphs, presents algorithms for isomorphism detection,
and discusses the notion of equivalence classes as sets of indistinguishable
graphs. Furthermore, it explores automorphisms as isomorphisms within a
graph, emphasizing their role in preserving graph properties and symmetry.
By integrating abstract algebraic principles, this concise exploration provides
insights into the interplay between algebraic structures and graph theory,
contributing to a deeper understanding of complex graph structures.

1 Introduction

The fundamental question of graph isomorphism is determining whether two graphs are
structurally identical. Graph isomorphism is not merely a matter of visual similarity but
encompasses a rigorous mathematical equivalence. This introduction sets the stage for our
exploration of graph isomorphism, highlighting its importance in various domains such as
network analysis, computer science, and chemistry. Through an overview of key concepts
and challenges in graph isomorphism, we pave the way for a deeper examination of its
connections with abstract algebra, equivalence classes, and automorphisms.
It is fascinating to note that, graphs can be analyzed using algebraic structures. For
instance, the adjacency matrix of a graph represents the graph’s connections between
vertices, and it can be manipulated using matrix algebra i.e. the set of matrices closed
under some operation. Similarly, the incidence matrix describes the relationships between
vertices and edges, providing another avenue for algebraic analysis.
Graph isomorphism, the notion that two graphs are structurally identical, forms an
equivalence relation. Equivalence classes emerge, partitioning the set of all graphs into
distinct classes based on isomorphism. This concept resonates with algebraic notions of
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equivalence classes, fostering a deeper understanding of structural similarities between
graphs. Group theory, a cornerstone of abstract algebra, finds application in studying
graph symmetries. The set of all automorphisms of a graph forms a group under
composition, known as the automorphism group. Understanding the structure of this
group sheds light on the symmetrical properties of the graph.
The connection between graphs and abstract algebra runs deep, with algebraic structures
providing powerful tools for analyzing and understanding graph properties and
relationships.

2 Graph Isomorphism

Given a graph G(V,E) and G′(V ′.E′), G and G′ are said to be isomorphic if they satisfy
the following necessary conditions:

• They must have the same number of vertices. |V | = |V ′|

• They must have the same number of edges. |E| = |E′|

• They must have equal number of vertices of a given degree.

Consider an example:

Figure 1: A Pair of Isomorphic Graphs, G(V,E) and G′(V ′, E′)

Despite having different labels in Figure 2, these two graphs are isomorphic. There exists
a bijection map between the vertex set of the graph G and the vertex set of graph G′,
defined as f : VG → VG′ .
Example of one such f is:
f(1) = s, f(2) = t, f(3) = u, f(4) = v, f(5) = w, f(6) = x, f(7) = y, f(8) = z Note that, f
has the property that neighbors N(v) of a vertex v in graph G is mapped to the neighbors
N(f(v)) where, f(v) is the image of v in G′.
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Vertices Neighbors

1 2 4 5

2 1 3 6

3 2 4 7

4 1 3 8

5 1 6 8

6 2 5 7

7 3 6 8

8 4 5 7

Table 1: From the table it is clear that the graphs in Figure 1 are isomorphic since they
have the same set of neighbors.

Figure 2: Same Pair of Isomorphic Graphs, G(V,E) and G′(V ′, E′), with Different Labelling

Two vertices in a graph are said to be adjacent if they have an edge between them,
otherwise, they are non-adjacent. Thus two graphs that differ by vertex labels or edge
labels might be isomorphic to each other.
Let G and H be two simple graphs. A function f : VG → VH preserves adjacency if for
every pair of adjacent vertices u and v in graph G, the vertices f(u) and f(v) are adjacent
in graph H. Similarly,f preserves non-adjacency if f(u) and f(v) are non-adjacent
whenever u and v are non-adjacent.
A bijection f : VG → VH between two simple graphs G and H is structure-preserving if it
preserves both adjacency and non-adjacency. That is, for every pair of vertices u, v in G, u
and v are adjacent in G ⇐⇒ f(u) and f(v) are adjacent in H.

Formally we define,
Two simple graphs G and H are isomorphic, denoted G ∼= H,if ∃a structure-preserving
bijection f : VG → VH . Such a function f is called an isomorphism from G to H.

Let’s have a look at two different pairs of graphs and the function that maps the vertex
set of one another in Figure 3.
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(a) Preserves adjacency and non-adjacency, but
not bijective

(b) Bijective and adjacency-preserving, but not
an isomorphism

Figure 3: The vertex map is defined as (a) j → j mod 2, (b) j → j + 4

Now, let’s consider more general graphs having self-loops and multiple edges. Does the
above definition of isomorphism still hold?

Figure 4: Graph G(V,E) and G′(V ′, E′) have a bijection map on vertices

The mapping f : VG → VH between the vertex-sets of the two graphs shown in Figure 4
given by f(i) = i, i = 1, 2, 3, 4.
This shows the map preserves adjacency and non-adjacency, but the two graphs are
clearly not structurally equivalent. This is due to the presence of the parallel edges.

To adapt to general graphs, we define:
A bijection f : VG → VH between two graphs G and H, is structure-preserving if (1) the
number of edges (even if 0) between every pair of distinct vertices u and v in graph G
equals the number of edges between their images f(u) and f(v) in graph H, and (2) the
number of self-loops at each vertex x in G equals the number of self-loops at the vertex
f(x) in H.

Isomorphism for Graphs with Multi-Edges
Two general graphs G and H are isomorphic if there exists, a pair of bijections
fV : VG → VH and fE : EG → EH which are consistent. We call fV and fE consistent if
for every edge e ∈ EG, the function fV maps the endpoints of e to the endpoints of the
edge fE(e).
Fact: If G and H are isomorphic simple graphs, then every structure-preserving vertex
bijection fV : VG → VH induces a unique consistent edge bijection. Indeed, we see that:
fE(uv) → fV (u)fV (v) is the consistent edge bijection induced by fV .

From Figure 5, let us find the number of consistent edge bijections.
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Figure 5: Graph G(V,E) with labelled vertices and edges

There are 8 distinct isomorphisms from G to H.

2.1 Properties of Graph Isomorphism

Let’s discuss some of the properties of graph isomorphism based on general graphs.

Proposition 2.1 Let G and H be isomorphic graphs. Then they have the same
number of vertices and edges.

Proof. The same number of vertices and edges are given by the bijective maps fV and fE .
2

Proposition 2.2 Let f : G → H be a graph isomorphism and let v ∈ VG.Then
deg(f(v)) = deg(v).

Proof. Since by definition f is structure-preserving, the number of proper edges and the
number of self-loops incident on vertex v equal the corresponding number for vertex f(v).
Thus, deg(f(v)) = deg(v). 2

Proposition 2.3 Let G and H be isomorphic graphs. Then they have the same
degree sequence.
OR
If G and H are isomorphic graphs, then the degrees of the vertices of G are the same
as the degrees of the vertices of H.

Proof. Let ϕ : VG → VH be an isomorphism.
Let v ∈ VG and consider u = ϕ(v) ∈ VH .
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Let v be adjacent to w1, w2, ..., wk ∈ VG. And v be non-adjacent to x1, x2, ..., xl ∈ VG.
Then degG(v) = k.
Then u is adjacent to ϕ(w1), ϕ(w2), ..., ϕ(wk) ∈ VH .
Again, consider vwi ∈ EG for i = 1, 2, ..., k implies, ϕ(vwi) = ϕ(v)(wi) ∈ EH since ϕ is
structure preserving.
Since isomorphism preserves adjacency and non-adjacency, |VH | = k + l and degH(u) = k.
Thus G and H have the same degree sequence. 2

Proposition 2.4 Let f : G → H be a graph isomorphism and e ∈ EG. Then the
endpoints of edge f(e) have the same degrees as the endpoints of e.

Proof. This can be shown similarly to the previous proposition. 2

Extending the definition of isomorphism to directed graphs, two digraphs G and H
are isomorphic if there is an isomorphism f between their underlying graphs that
preserves the direction of each edge.

3 Equivalence Classes formed by Isomorphic Graphs

The relation isomorphism between graphs is an equivalence relation.
Prove the equivalence relation.
Given a graph X, the set of graphs isomorphic to X is called the isomorphism class of X.
We saw the three conditions that two graphs must satisfy to be isomorphic, here we will
see that these conditions are necessary but by no means sufficient for two graphs to be
isomorphic. Consider the graph K33 and the Prism graph.

Figure 6: Graphs that satisfy the necessary condition of isomorphism but belong to two
different equivalence classes

Note that K33 has a cycle of length 4 and is thus bipartite. Whereas, the prism graph has
a cycle of length 3 and is thus non-bipartite. Interestingly, every 3 regular graphs is
isomorphic to one of these graphs. Thus giving rise to the partition and forming the
equivalence class.
The equivalence class of the isomorphic class of four vertices is shown in Figure 7.
Each equivalence class under ∼= is called an isomorphism type. As we saw in the previous
example, counting isomorphism types of graphs generally involves the algebra of
permutation groups.
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Figure 7: Equivalence class formed by the isomorphic graphs with 4 vertices

4 Graph Automorphism

An isomorphism from a graph G to itself is called an automorphism.
For example, consider the graph, G in Figure 8.
The automorphisms of the graph, G are:
1. The identity automorphism that maps every vertex of the graph to itself.
e : u→ u, v → v, w → w, x→ x, y → y
2. Another automorphism, where the vertices are exchanged.
α : u→ y, v → x,w → w, x→ v, y → u
Note: The vertices that are flipped have the same degree. Such as, the
deg(u) = deg(y), deg(v) = deg(x). Again since w is the only vertex with deg(w) = 3, it
had to be fixed.

Figure 8: Graph G(V,E)

We can see that there are no more automorphisms of graph G that preserve the structural
equivalence among the vertices, as well as among the edges.
Now we define, Aut(G), where G is a graph, as the set of all the automorphisms of G.
Then from the previous example, Aut(G) = {e, α}
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Note that each automorphism is in itself a bijection and also structure-preserving, thus we
can compose two automorphisms. The composition table of Aut(G) in this example is
shown below.

◦ e α

e e α
α α e

To show that Aut(G) forms a Group under Composition.
To show that it is indeed an automorphism let’s verify the properties:

1. Closure: Let ϕ, ψ ∈ Aut(G). Since ϕ and ψ are automorphisms, they preserve the
structure of the graph G. Therefore, their composition ϕ ◦ ψ also preserves the
structure of G, making ϕ ◦ ψ an automorphism. Hence, Aut(G) is closed under
composition.

2. Associativity: Composition of functions is associative, so this property holds
trivially.

3. Identity: The identity automorphism eG is defined as the function that maps each
vertex to itself. It preserves the structure of G, making it an automorphism. For any
automorphism ϕ in Aut(G), eG ◦ ϕ = ϕ, and ϕ ◦ eG = ϕ, satisfying the identity
property.

4. Inverse: Let ϕ ∈ Aut(G). Since ϕ is a bijection, it has an inverse ϕ−1. Since ϕ and
ϕ−1 are both automorphisms, their composition ϕ ◦ ϕ−1 is the identity function eG,
and ϕ−1 ◦ ϕ is also eG, satisfying the inverse property.

Therefore, Aut(G) forms a group under composition.
Since, Aut(G) forms a group under composition, we can see that it is isomorphic to the
permutation group S2. Thus, Aut(G) ∼= S2.
An automorphism is therefore nothing but a permutation of the vertices and edges of G
such that it maps the edges to edges and non-edges to non-edges.

A graph is said to be asymmetric if its automorphism group consists only of the identity
map.
In other words, a graph with no isomorphic graph is called asymmetric.

Figure 9: The smallest asymmetric graph

We can see that automorphism thereby describes the symmetry of the graph. In Figure 9,
we see that there is no symmetry in the graph. This also helps us infer that it is
asymmetric.
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Consider the graph C4.

Figure 10: C4

Let’s construct the automorphism map for C4:

Identity map: e =

(
u v w x
u v w x

)
Rotation by 90◦: α1 =

(
u v w x
v w x u

)
.

Rotation by 180◦: α2 =

(
u v w x
w x u v

)
.

Rotation by 270◦: α3 =

(
u v w x
x u v w

)
.

Reflection along the diagonal through vx: α4 =

(
u v w x
w v x u

)
.

Reflection along the diagonal through uw: α5 =

(
u v w x
u x w v

)
.

Reflection along the x− axis: α6 =

(
u v w x
x w v u

)
.

Reflection along the y − axis: α7 =

(
u v w x
v u x w

)
.

Therefore, Aut(G) = {e, α1, α2, α3, α4, α5, α6, α7}.
It is isomorphic to the Dihedral group of order 8 (D4).
Also, {e, α1, α2, α3} forms a subgroup.
Thus, all automorphisms of any graph can be described by identity, reflection, or rotation
preserving symmetry.

4.1 Properties of Graph Automorphism

Let’s discuss some of the properties of graph automorphism based on general graphs.

Proposition 4.1 For any graph having n vertices, the complete graph (Kn) among
them has the highest number of automorphism.
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Proof. For a complete graph, the vertices are equal as all of them have the same degree.
Thus we can exchange any of the vertices with one another. Thus in a complete graph, n!
permutations of the vertices are possible. In other words, a complete graph is the most
symmetric graph for any number of vertices.
Then for any complete graph with n vertices, Kn, Aut(Kn) ∼= Sn. 2

Proposition 4.2 The automorphism group of the complete graph on n vertices with
any single edge removed is isomorphic to S2 × Sn−2.

Proof. Let G = Kn \ e, where e is any edge of Kn. It follows that G consists of a pair of
vertices u and v which both have degree n− 2 along with n− 2 vertices all of degree n− 1.
Any automorphism of the graph must permute each of these two sets independently of the
other, so the automorphism group in general must be the direct product of two
permutation groups. It is clear that the only options for the set of two vertices is to either
fix or swap the two, so this portion of the direct product is isomorphic to S2. On the other
hand, the other n− 2 vertices all are connected to each other, so this portion of the direct
product must be isomorphic to the automorphism group of Kn−2, which we know by
Proposition 4.1 to be Sn−2. It follows that the automorphism group of G is isomorphic to
S2 × Sn−2. 2

Proposition 4.3 For the complete bipartite graph,Kn,m, where n ≥ m: If n > m,
then Aut(Kn,m) ∼= Sn × Sm.

Proof. We know, Aut(Kn) ∼= Sn. By proposition 4.1, it follows that Aut(Kn) ∼= Sn. Thus,
any automorphism of the form (xi, xj) or of the form (yk, yl) is in Aut(Kn,m). Thus,
Sn × Sm is a subgroup of Aut(Kn,m). Suppose that n > m. Since deg(xi) = m and
deg(yj) = n, there is no automorphism ϕ such that ϕ(xi) = yj . Thus,
Aut(Kn,m) ∼= Sn × Sm. 2

Proposition 4.4 Degree Preserving: For all u ∈ VG and for all ϕ ∈ Aut(G),
deg(u) = deg(ϕ(u)).

Proof. Let u ∈ VG with neighbors u1, ..., uk. Let ϕ ∈ Aut(G). Since ϕ preserves adjacency,
it follows that ϕ(u1), ..., ϕ(uk) are neighbors of ϕ(u). Therefore, deg(ϕ(u)) ≥ k. If
v /∈ {u1, ..., uk} is a neighbor of ϕ(u), then ϕ−1(v) is a neighbor of u. Therefore, the
neighbors of ϕ(u) are precisely ϕ(u1), ..., ϕ(uk). Thus, deg(u) = deg(ϕ(u)). 2

Proposition 4.5 Distance Preserving: For all u, v ∈ VG and for all ϕ ∈ Aut(G),
d(u, v) = d(ϕ(u), ϕ(v)).

Proof. Let u, v ∈ VG and let ϕ ∈ Aut(G). Suppose that the distance from u to v is
d(u, v) = d. Further, let u = u0, u1, ..., ud−1, ud = v be a shortest path from u to v. Since ϕ
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preserves adjacency, ϕ(u) = ϕ(u0), ϕ(u1), ..., ϕ(ud−1), ϕ(ud) = ϕ(v) is a path from ϕ(u) to
ϕ(v). Thus, d(ϕ(u), ϕ(v)) ≤ d = d(u, v). Suppose that ϕ(u), v1, ..., vm−1, ϕ(v) is a shortest
path from ϕ(u) to ϕ(v). It follows that u, ϕ−1(v1), ..., ϕ

−1(vm−1), v is a shortest path form
u to v. It follows that d(u, v) ≤ d(ϕ(u), ϕ(v)). Hence, we have equality. 2

Proposition 4.6 The automorphism group of G is equal to the automorphism group
of the complement G.

Proof. Note that automorphisms preserve not only adjacency, but non-adjacency as well.
Hence, ϕ ∈ Aut(G) if and only if ϕ ∈ Aut(G′). It follows that Aut(G) ∼= Aut(G′). 2

Proposition 4.7 Given a Graph G with n vertices which is not complete, Aut(G)
forms a subgroup of Aut(Kn) where Kn is the complete graph with n vertices.

Proof. Any graph G on n nodes can be treated as a subgraph of Kn. We also note that
the automorphism group of Kn is Sn which is all the permutations allowed on n nodes.
So, a graph G on nodes would only contain a subset of these permutations in Aut(G).
Since , Aut(G) is a group and it is also a subset of Sn, it is a subgroup of Sn. 2

Proposition 4.8 The order |Aut(G)| of the automorphism group of a graph G of
order n is a divisor of n! and equals n! iff G = Kn or G = K ′

n.

Proof. By Lagrange’s theorem, the order of a subgroup divides the order of a group. If
H ≤ G then |G|

|H| = [G : H].
If G is a graph of order n that is not complete, there is some pair of adjacent vertices and
some pair of non-adjacent vertices.
Then there is some permutation of its vertex set that is not an automorphism.
Then, Aut(G) ≤ Aut(Kn) ∼= Sn.
We know, |Sn| = n!. Then, Aut(Kn) = n!, then |Aut(G)||n!.
Again, for K ′

n is a graph with n isolated vertices. Thus, there can be n! permutations
possible of the vertices. Also from proposition 4.6., Aut(Kn) ∼= Aut(K ′

n) which is again
isomorphic to Sn.
This completes the proof. 2

Frucht’s Theorem Given a finite group τ , there exists a graph G such that Aut(G) is
isomorphic to τ .

Suppose that we are given a finite group τ . Our goal is to find a graph G such that
Aut(G) ∼= τ . The result was proven by Frucht in 1939. The proof of Frucht’s Theorem
involves use of the Cayley graph(introduced in 1878).

Some application of Frucht’s Theorem

Frucht’s Theorem provides a connection between finite groups and graphs. It allows for
the representation of finite groups as automorphism groups of certain graphs. This
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connection has applications in group theory, particularly in the study of group
representations and character theory.
Frucht’s Theorem contributes to the development of algorithms for graph isomorphism
testing. By constructing graphs with prescribed automorphism groups, it provides test
cases for evaluating the performance and correctness of graph isomorphism algorithms.
Understanding the automorphism structure of graphs can lead to improvements in
isomorphism testing algorithms.

5 Conclusion

In abstract algebra, the concepts of graph isomorphism, equivalence classes, and
automorphisms play crucial roles in analyzing structural similarities and symmetries
within graphs. Graph isomorphism enables comparisons and classifications of graphs,
while equivalence classes categorize graphs based on their symmetries. Automorphisms
capture symmetrical transformations of graphs, providing insights into group theory and
permutation groups. These concepts find applications in diverse fields, including network
analysis, cryptography, and computational biology, where understanding graph structures
and symmetries is essential for solving real-world problems efficiently and effectively.
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