Exploring Graph Isomorphism, Equivalence Classes and Automorphisms through Abstract Algebra

> Shramana Dey -JRF in Computer Science

Contents

- Graph Isomorphism
- Equivalence Classes
- Graph Automorphism

Introduction

- 1. **Graph Isomorphism: Beyond Visual Similarity:** Graph isomorphism transcends visual similarity, representing a rigorous mathematical equivalence.
- 2. **Cross-Domain Significance:** Graph isomorphism plays a pivotal role in network analysis, computer science, and chemistry, highlighting its interdisciplinary importance.
- 3. Algebraic Analysis of Graphs: Algebraic structures, like adjacency and incidence matrices, enable the manipulation and analysis of graphs using matrix algebra.
- 4. **Equivalence Classes and Graph Isomorphism:** Graph isomorphism forms equivalence relations, leading to the emergence of equivalence classes that partition graphs based on structural similarity.
- 5. **Group Theory and Automorphism Group:** Group theory aids in studying graph symmetries, with the automorphism group revealing insights into the symmetrical properties of a graph.

Graph Isomorphism

Given a graph G(V, E) and G'(V', E'), G and G' are said to be isomorphic if they satisfy the following necessary condition:

- They must have the same number of vertices.
- They must have the same number of edges.
- They must have equal number of vertices with a given degree.

There exists a bijection map between the vertex set of the graph G and the vertex set of graph G', defined as $f: V_G \rightarrow V_{G'}$.

Example of one such f is: f(1) = s, f(2) = t, f(3) = u, f(4) = v, f(5) = w, f(6) = x, f(7) = y, f(8) = z Note that, f has the property that neighbors N(v) of a vertex v in graph G is mapped to the neighbors N(f(v)) where, f(v) is the image of v in G'.

Graph Isomorphism

Let G and H be two simple graphs. A function $f: V_G \to V_H$ preserves **adjacency** if for every pair of adjacent vertices u and v in graph G, the vertices f(u) and f(v) are adjacent in graph H. Similarly, f preserves **non-adjacency** if f(u) and f(v) are non-adjacent whenever u and v are non-adjacent.

A bijection $f: V_G \to V_H$ between two simple graphs G and H is structure-preserving if it preserves both adjacency and non-adjacency. That is, for every pair of vertices u, v in G, uand v are adjacent in $G \iff f(u)$ and f(v) are adjacent in H.

Two simple graphs G and H are isomorphic, denoted $G \cong H$, if \exists a structure-preserving bijection f: $V_G \rightarrow V_H$. Such a function f is called an isomorphism from G to H.

Graph Isomorphism

(a) Preserves adjacency and non-adjacency, but not bijective

(b) Bijective and adjacency-preserving, but not an isomorphism

The vertex map is defined as (a) $j \to j \mod 2$, (b) $j \to j + 4$

Are these two graphs Isomorphic?

To adapt to general graphs, we define:

A bijection $f: V_G \to V_H$ between two graphs G and H, is structure-preserving if (1) the number of edges (even if 0) between every pair of distinct vertices u and v in graph Gequals the number of edges between their images f(u) and f(v) in graph H, and (2) the number of self-loops at each vertex x in G equals the number of self-loops at the vertex f(x) in H.

Proposition 2.1 Let G and H be isomorphic graphs. Then they have the same number of vertices and edges.

Proposition 2.2 Let $f : G \to H$ be a graph isomorphism and let $v \in V_G$. Then deg(f(v)) = deg(v).

Proposition 2.3 Let G and H be isomorphic graphs. Then they have the same degree sequence.

OR

If G and H are isomorphic graphs, then the degrees of the vertices of G are the same as the degrees of the vertices of H.

Proposition 2.4 Let $f: G \to H$ be a graph isomorphism and $e \in E_G$. Then the endpoints of edge f(e) have the same degrees as the endpoints of e.

Equivalence Classes formed by Isomorphism Graphs

- □ The relation isomorphism between graphs is an equivalence relation.
- Given by graph X, the set of graphs isomorphic to X is called the isomorphism class of X. The isomorphism classes are the equivalence classes that partition the set of graphs with vertex set V.
- Each equivalence class under isomorphism relation is called an isomorphism type.
- Alongside there are two 3-regular graphs With 6 vertices. Let's check whether they are isomorphic?

Equivalence Classes formed by Isomorphism Graphs

(f)

(j)

(i)

Figure: Equivalence class for 4 vertices

All Graphs of 4 vertices will be isomorphic to any of these graphs.

- An isomorphism from a graph G to itself is called an automorphism.
- In the Graph shown alongside, the automorphisms are:
 - The identity automorphism:

 $e: u \to u, v \to v, w \to w, x \to x, y \to y$

• The automorphism where the vertices are exchanges: $\alpha: u \to y, v \to x, w \to w, x \to v, y \to u$

- *Aut(G)* is defined as the set of all the automorphisms of G, where G is a graph.
 Aut(G) = {e, α}
- *Aut(G)* forms a Group under Composition.

- An automorphism is therefore a permutation of the vertices and edges of G such that it maps the edges to edges and non-edges to non-edges.
- A graph is said to be **asymmetric** if its automorphism group consists only of the identity map.
- Automorphism describes the symmetry of a graph.

Let's construct the automorphism map for C_4 : Identity map: $e = \begin{pmatrix} u & v & w & x \\ u & v & w & x \end{pmatrix}$ Rotation by 90°: $\alpha_1 = \begin{pmatrix} u & v & w & x \\ v & w & x & u \end{pmatrix}$. Rotation by 180°: $\alpha_2 = \begin{pmatrix} u & v & w & x \\ w & x & u & v \end{pmatrix}$. Rotation by 270°: $\alpha_3 = \begin{pmatrix} u & v & w & x \\ x & u & v & w \end{pmatrix}$. Reflection along the diagonal through vx: $\alpha_4 = \begin{pmatrix} u & v & w & x \\ w & v & x & u \end{pmatrix}$. Reflection along the diagonal through uw: $\alpha_5 = \begin{pmatrix} u & v & w & x \\ u & x & w & v \end{pmatrix}$. Reflection along the x - axis: $\alpha_6 = \begin{pmatrix} u & v & w & x \\ x & w & v & u \end{pmatrix}$. Reflection along the $y - axis: \alpha_7 = \begin{pmatrix} u & v & w & x \\ v & u & x & w \end{pmatrix}$. Therefore, $Aut(G) = \{e, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\}.$

Thus, all automorphisms of any graph can be described by identity, reflection, or rotation preserving symmetry.

- The more automorphism a graph has, the more symmetric it is.
- The following is an example of smallest automorphic graph.

Proposition 4.1 For any graph having n vertices, the complete graph (K_n) among them has the highest number of automorphism.

Proposition 4.2 The automorphism group of the complete graph on n vertices with any single edge removed is isomorphic to $S_2 \times S_{n-2}$.

Idea: Removing an edge from a complete graph leads to a graph having 2 vertices of degree n-2 and n-2 vertices of degree n-1.

Proposition 4.3 For the complete bipartite graph, $K_{n,m}$, where $n \ge m$: If n > m, then $Aut(K_{n,m}) \cong S_n \times S_m$.

Idea: Each vertex in one partition has degree either n or m. Exchanges vertices of degree n with another vertex of degree n is only allowed.

Thus, (n!.m!) Permutations are allowed.

Proposition 4.4 Degree Preserving: For all $u \in V_G$ and for all $\phi \in Aut(G)$, $deg(u) = deg(\phi(u))$.

Proposition 4.5 Distance Preserving: For all $u, v \in V_G$ and for all $\phi \in Aut(G)$, $d(u, v) = d(\phi(u), \phi(v))$.

Proposition 4.6 The automorphism group of G is equal to the automorphism group of the complement G.

Proposition 4.7 Given a Graph G with n vertices which is not complete, Aut(G) forms a subgroup of $Aut(K_n)$ where K_n is the complete graph with n vertices.

Idea: G is a subgraph of K_n . Aut(G) is a group. Aut(G) \subseteq Aut(K_n) \cong S_n

Proposition 4.8 The order |Aut(G)| of the automorphism group of a graph G of order n is a divisor of n! and equals n! iff $G = K_n$ or $G = K'_n$.

Idea: We know by Lagrange's theorem, order of a subgroup divides the order of a group.

Frucht's Theorem

Frucht's Theorem Given a finite group τ , there exists a graph G such that Aut(G) is isomorphic to τ .

Some Application of Frucht's Theorem:

- 1. Provides a connection between finite groups and graphs.
- 2. Contributes to the development of algorithms for graph isomorphism testing.
- 3. Has implications in cryptography, particularly in the design of cryptographic protocols and systems based on group theory.
- 4. Has applications in chemical graph theory, where it can be used to analyze and classify molecular graphs based on their automorphism groups.

References

- □ Narsigh Deo, 2007. Graph Theory with applications to Engineering and Computer Science.
- Graph Theory: Structure and Representation" [Online]. http://www.cs.columbia.edu/~cs4203/files/GT-Lec2.pdf" Access Date: 01-04-2024
- "A STUDY ON ISOMORPHISM OF ALGEBRAIC GRAPHS" [Online]. http://www.imvibl.org/buletin/bulletin_imvi_8_3_2018/bulletin_imvi_8_3_2018_523_532.pdf Access Date: 01-04-2024
- "Graph Isomorphisms" [Online].
 https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03\%3A_ Graph_Theory/11\%3A_Basics_of_Graph_Theory/11.04\%3A_Graph_Isomorphisms Access Date: 01-04-2024
- "AUTOMORPHISM GROUPS OF SIMPLE GRAPHS" [Online]. https://www.whitman.edu/documents/Academics/Mathematics/2014/rodriglr.pdf Access Date: 10-04-2024
- "Automorphism Group of Graphs (Supplemental Material for Intro to Graph Theory)" [Online].
 http://faculty.etsu.edu/beelerr/automorph-supp.pdf Access Date: 12-04-2024

Thank You!