Elements of Algebraic Structures	DATE: 20-th April,2024
Topic: Application of Coset	in Error Correction
Lecture: Sujata Ghosh	Presented by: Soumik Guha Roy

Contents

1 Introduction		2
1.1 Definition		2
2 Group Code		2
2.1 Definition \ldots \ldots \ldots		2
2.2 Generating Group Code .		3
3 Parity Check Matrix and En	ncoding function	4
4 Decoding		5
4.1 Maximum likelihood decod	ing function:	5
4.2 Coset leader \ldots \ldots		6
4.3 Construction of decoding t	able using coset leader	6
5 Basic Decoding function		7
6 Syndrome of a code word		8
7 Modified Decoding function		9
8 Example		10
8.1 Without noise \ldots \ldots		10
8.2 With noise \ldots \ldots \ldots		10
8.3 With noise but erroneous a	acceptance	11
2 3 4 5 6 7	 1.1 Definition	1.1 Definition Group Code 2.1 Definition 2.2 Generating Group Code 2.2 Generating Group Code Parity Check Matrix and Encoding function Decoding 4.1 Maximum likelihood decoding function: 4.2 Coset leader 4.3 Construction of decoding table using coset leader 4.3 Construction of decoding table using coset leader Basic Decoding function Syndrome of a code word Modified Decoding function 8.1 Without noise 8.2 With noise

1 Introduction

1.1 Definition

- Message: The basic unit of information called a message which is finite sequence of characters from a finite alphabet. Here , our alphabet set is B = 0, 1.
- Word: Basic unit of information, called word, is a sequence of m 0's or 1's.
- Weight: It is defined as the number of 1's in a code word. the weight of the code word 001 is |001| = 2.
- **Distance:** It is defined as the number of differing positions among two same length code word w_1, w_2 . It is denoted by $\delta(w_1, w_2) = |w_1 \oplus w_2|$. Consider two words 1010 and 1011. The distance is $\delta(1010, 1011) = |1010 \oplus 1011| = |0001| = 1$
- The set $B = \{0, 1\}$ is forming a **group** under the operation '+' defined as: $\begin{array}{c|c}
 + & 0 & 1 \\
 \hline
 0 & 0 & 1 \\
 1 & 1 & 0
 \end{array}$
- B^m = B×B×B····×B is group under the operation ⊕ defined as (x₁, x₂,..., x_m)⊕ (y₁, y₂,..., y_m) = (x₁ + y₁, x₂ + y₂,..., x_m + y_m) and the **identity element** of B^m = (0, 0, ..., 0) = 0̄
- Elements of B^m will be written as b_1, b_1, \ldots, b_m
- Sender sends $x \in B^m$ and the receiver receives $x_t \in B^m$. Due to Noise $x \neq x_t$. Hence, if noise exists then x_t can be any element in B^m .

2 Group Code

2.1 Definition

- (B^n, \oplus) is a group
- An (m,n) Encoding function $e : B^m \mapsto B^n$ is called **Group Code** if $e(b^m) = \{e(b) | b \in B^m\} = Range(e)$ is a subgroup of (B^n, \oplus)

Example of Group co	ode				
• Given an encoding function $e: B^2 \mapsto B^3$		e the	odd pa	rity o	of zero
encoding is used. The function is shown belo			1	0	
B^2 B^3					
00 000					
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Hence, elements of $B^3 = N$		{000	011 10	1 110) Lets
	_	1000,	011,10	1,110	J.LC05
	\oplus	000	011	101	110
	000	000	011	101	110
check the composition table of (N, \oplus) .	011	011	000	110	101
	101	101	110	110	011
	110	110	101	011	000
Here, (N, \oplus) forming a group and (N, \oplus) is s	ubgro	oup of	$(B^3,\oplus$).So,($N,\oplus)$
is a Group code.					
Г	D ²	D3			
-	B^2	B^3			
		001			
• Consider the following encoding function:	01	010	Hence,	eleme	ents of
	10	101			
		111			
$B^3 = N = \{001, 010, 101, 111\}$ and $(B^3, \oplus$) not	form	ing a g	group.	Hence
(B^3,\oplus) not a group code.					

2.2 Generating Group Code

• Minimum distance of a group code

Theorem 1: Given $e: B^m \mapsto B^n$ is a group code. The *minimum distance* of e is the minimum weight of the nonzero code word.

- Theorem 2: Let D and E be m × p Boolean matrices, and let F be a p × n Boolean matrix. Then (D ⊕ E) ★ F = (D ★ F) ⊕ (E ★ F)
- Theorem Let $m, n \in \mathbb{N}$ with m < n and r = n m and let **H** be an $n \times r$ Boolean matrix. Then the function $f_H : B^n \mapsto B^r$ defined by $f_H(x) = x \star \mathbf{H}$ where $x \in B^n$ is a homomorphism from the group B^n to B^r .

Proof: Let $x, y \in B^n$. Then

$$f_H(x \oplus y) = (x \oplus y) \star H$$

= $(x \star H) \oplus (y \star H)[UsingTheorem2]$
= $f_H(x) \oplus f_H(y)$

Hence, f_H is a homomorphism from B^m to B^n .

- Corollary 3.1: $N = \{x | x \in B^n, x \star \mathbf{H} = 0\}$ is a normal subgroup of (B^n, \oplus) .

Proof: N is the kernel of the homomorphism f_H , so it is a normal subgroup of (B^n, \oplus) .

3 Parity Check Matrix and Encoding function

	h_{11}	h_{12}	 h_{1r}	
	h_{21}	h_{22}	 h_{2r}	
- Parity check matrix An $n \times r$ Boolean matrix defined as $\mathbf{H} =$	h_{m1}	h_{m2}	 h_{mr}	
	1	0	 0	
	0	1	 0	
• Parity check matrix An $n \times r$ Boolean matrix defined as $\mathbf{H} =$	0	0	 1	

where the last r rows is a identity matrix I_r .

• Encoding function using parity check matrix: $e_H : B^m \mapsto B^n$.Let $b = b_1 b_2 \dots b_m$ and $x = e_H(b) = b_1 b_2 \dots b_m x_1 x_2 \dots x_r$ where

$$x_{1} = b_{1}.h_{11} + b_{2}.h_{21} + \dots + b_{m}.h_{m1}$$

$$x_{2} = b_{1}.h_{12} + b_{2}.h_{22} + \dots + b_{m}.h_{m2}$$

$$\dots$$

$$x_{r} = b_{1}.h_{1r} + b_{2}.h_{2r} + \dots + b_{m}.h_{mr}$$
(1)

• Theorem Let $x = y_1 y_2 \dots y_m x_1 x_2 \dots x_r \in B^n$. Then $x \star H = 0 \leftrightarrow x = e_H(b), b \in B^m$

- Corollary $e_H(B^m) = \{e_H(b) | b \in B^m\}$ is a sub group of B^n

Example of Encoding

Example of Encoding
• Given the group code $e_H: B^2 \mapsto B^5$ then $m = 2, n = 5$ and the parity
check matrix $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
• $B^2 = \{00, 01, 10, 11\}.$
• Then $e(00) = 00x_1x_2x_3$ where $b_1 = b_2 = 0$ and x_1, x_2, x_3 can be obtained from the H matrix. $x_1 = x_2 = x_3 = 0$.Hence, $e(00) = 00000$
• Similarly, $e(10) = 10x_1x_2x_3$ where $b_1 = 1, b_2 = 0$ and $x_1 = x_2 = 1, x_3 = 0$. Hence, $e(01) = 10110$
• In the same way, $e(01) = 01x_1x_2x_3$ where $b_1 = 0, b_2 = 1$ and $x_1 = 0, x_2 = x_3 = 1$. Hence, $e(01) = 01011$
• Finally, $e(11) = 11x_1x_2x_3$ where $b_1 = 1, b_2 = 1$ and $x_1 = 1, x_2 = 0, x_3 = 1$. Hence, $e(01) = 11101$

• Minimum distance of this group code (2,5) is 3 (Why this distance?)

4 Decoding

4.1 Maximum likelihood decoding function:

Given $e_H : B^m \mapsto B^n$. Let us list the code words in a fixed order: $x^{(1)}, x^{(2)}, \ldots, x^{(2^m)}$. Let x_t be the received word and compute $\delta(x^{(i)}, x_t) \forall i = 1$ to 2^m and choose the first code word, $x^{(s)}$ such that min $\delta(x^{(i)}, x_t) = \delta(x^{(s)}, x_t) \forall i = 1$ to 2^m . Hence, $x^{(s)}$ is the closest code to x_t and the first in the list $x^{(1)}, x^{(2)}, \ldots, x^{(2^m)}$. Let $x^{(s)} = e(b)$. Then **maximum** likelihood decoding function d associated with e by $d(x_t) = b$ where x_t is the received word. The maximum likelihood decoding function d decoding functing function d

 $x^{(1)}, x^{(2)}, \dots, x^{(2^m)}.$

Theorem: Given that e is an (m, n) encoding function and d is the maximum likelihood decoding function associated with e. Then (e,d) can correct k or fewer errors if and only if the minimum distance of e is at least 2k + 1.

4.2 Coset leader

Let $e : B^m \to B^n$ be an (m, n) encoding function. N is set of code words in B^n such that $N = \{x^{(1)}, x^{(2)}, \ldots, x^{(2^m)}\}$ Let x = e(b) where $b \in B^n$ is transmitted and received as $x_t \in B^n$. Left coset of N is $x_t + N = \{x_t + x^{(1)}, x_t + x^{(2)}, \ldots, x_t + x^{(2^{(m)})}\} =$ $\{\epsilon_1, \epsilon_2, \ldots, \epsilon_{2^{(m)}}\}$ where $\epsilon_{2^{(i)}} = x_t \oplus x^{(i)}$. Distance between the received code word x_t and $x^{(i)}$ is $|\epsilon_i| \epsilon_j$ is a coset member with smallest weight, then $x^{(j)}$ must be the code word that is closest to x_t . Here, $x^j = \bar{0} \oplus x^j = x_t \oplus x_t \oplus x^j = x_t \oplus \epsilon_j$

Coset Leader An element ϵ_j having the smallest weight, called the *Coset leader*. *Coset leader may not be unique*

Example of coset leader
Given the encoding function $e : B^2 \mapsto B^3$, which is odd parity of zero function. Hence, $B^2 = \{00, 01, 10, 11\}$ and $N =$
$B^3 = \{000, 011, 101, 110\}$ and $B^3 - N = \{001, 010, 100, 111\}.$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$001 = \epsilon_1 010 = \epsilon_2 \oplus x^{(2)} 100 = \epsilon_2 \oplus x^{(3)} 111 = \epsilon_2 \oplus x^{(4)} \text{fibre, in the}$
$row1,\epsilon_1 = 000$ is the coset leader. In the $row2$, the coset leader is
$\epsilon_2 = 001.$ Multiple possible coset leader exists in the 2nd row. But only
one coset leader exists in the row 1.Coset leaders can also be used to generate
each row.

4.3 Construction of decoding table using coset leader

Let $N = \{x^{(1)}, x^{(2)}, \dots, x^{(2^m)}\}$, where $x^{(1)}$ is $\overline{0}$, the identity element of B^n . Now if $x^{(1)} \in N$, then $x^{(1)} + N = \{x^{(1)}, x^{(2)}, \dots, x^{(2^m)}\}$.

Now take $y \in B^n - N$, then $y \oplus N = \{y \oplus x^{(1)}, y \oplus x^{(2)}, \dots, y \oplus x^{(2^m)}, \}$. In the left coset $y \oplus N$ pick an element of least weight, a coset leader, which can be denoted by ϵ_2 . In case of tie, pick any of the element of least weight. Now as $\epsilon_2 \in y \oplus N$, we can say that $\epsilon_2 \oplus N = y \oplus N$. This implies that every word in the coset of $y \oplus N$ can also be written as $\epsilon_2 \oplus v$ where $v \in N$. We can express the coset $y \oplus N = y \oplus N$.

	10010	. Decouning 1	0.010	
$\bar{0} = \epsilon_1$	$x^{(2)}$	$x^{(3)}$		$x^{(2^m-1)}$
ϵ_2	$\epsilon_2 \oplus x^{(2)}$	$\epsilon_2 \oplus x^{(3)}$		$\epsilon_2 \oplus x^{(2^m-1)}$
ϵ_3	$\epsilon_3 \oplus x^{(2)}$	$\epsilon_3 \oplus x^{(3)}$		$\epsilon_3 \oplus x^{(2^m - 1)}$
:	:	:	:	:
$\epsilon_{2^{n-m}}$	$\epsilon_{2^{n-m}} \oplus x^{(2^{n-m})}$	$\epsilon_{2^{n-m}} \oplus x^{(3)}$		$\epsilon_{2^{n-m}} \oplus x^{(2^m-1)}$

Table 1: Decoding Table

 $\{\epsilon_2 \oplus x^{(1)}, \epsilon_2 \oplus x^{(2)}, \epsilon_2 \oplus x^{(3)}, \dots, \epsilon_2 \oplus x^{(2^m)}\} = \{\epsilon_2, \epsilon_2 \oplus x^{(2)}, \epsilon_2 \oplus x^{(3)}, \dots, \epsilon_2 \oplus x^{(2^m)}\}.$ Let $z \in B^n - N$ and $z \neq y$. The left coset of N $z \oplus N = \{z \oplus x^{(1)}, z \oplus x^{(2)}, \dots, z \oplus x^{(2^m)}, \} = \{\epsilon_3, \epsilon_3 \oplus x^{(2)}, \epsilon_3 \oplus x^{(3)}, \dots, \epsilon_3 \oplus x^{(2^m)}\},$ where ϵ_3 is the element in $z \oplus N$ with smallest weight. Hence, the coset leader for $z \oplus N$ is ϵ_3 .

Continue this process until all elements of B^n have been listed. The result is listed in the following table, called the **decoding table**. The decoding table contains $2^{n-m} = 2^r$ rows one for each coset of N and 2^m columns, that is total 2^n elements.

If we receive the word x_t , we locate it in the decoding table. If $x \in N$ and x is at the top of the table of the row of x_t , then x is the code word which closest to x_t . Thus if x = e(b), we let $d(x_t) = b$.

Example of decoding table construction								
Given the encoding function $e : B^2 \mapsto B^3$, which is odd								
parity of zero function. Hence, $B^2 = \{00, 01, 10, 11\}$ and $N =$								
$\underline{B^3} = \{000, 011, 101, 110\} \text{ and } \underline{B^3} - N = \{001, 010, 100, 111\}.$								
$000 = \epsilon_1 011 = \epsilon_1 \oplus x^{(2)} 101 = \epsilon_1 \oplus x^{(3)} 110 = \epsilon_1 \oplus x^{(4)}$								
$001 = \epsilon_1 010 = \epsilon_2 \oplus x^{(2)} 100 = \epsilon_2 \oplus x^{(3)} 111 = \epsilon_2 \oplus x^{(4)}$								

5 Basic Decoding function

- Given $e: B^m \mapsto B^n$ is a group code and sender sends the data b encoded as x = e(b) to the receiver.
- Step 1: Determine all the left cosets of $N = e(B^m)$
- Step 2: For each coset, find the coset header(a word with smallest weight)
- Step 3: Determine in which coset of N, x_t belongs. [As N is normal subgroup of B^n , due to partition of N, x_t will be in exactly one coset among 2^{n-m}]

- Step 4: Let ϵ be the coset leader as determined in Step 3.Compute $x = x_t \oplus \epsilon$. If e(b) = x, then $d(x_t) = b$.Hence, receiver decodes x_t as b.
- The **main problem of this algorithm** is the calculation of the entire table containing all the coset elements.

Example of decoding using the decoding table									
Given the encoding function $e : B^2 \mapsto B^3$, which is odd parity of zero function. Hence, $B^2 = \{00, 01, 10, 11\}$ and $N = B^3 = \{000, 011, 101, 110\}$ and $B^3 - N =$									
$\{001, 010, 100, 111\}$. The encoding function is $\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\boxed{000=\epsilon_1 011=\epsilon_1 \oplus x^{(2)}}$	$101 = \epsilon_1 \oplus x^{(3)}$	$110 = \epsilon_1$	$\oplus x^{(4)}$						
$001 = \epsilon_1 010 = \epsilon_2 \oplus x^{(2)}$	$100 = \epsilon_2 \oplus x^{(3)}$	111= ϵ_2	$\oplus x^{(4)}$						

- Consider the received word is $x_t = 011$. The receiver will search the decoder table for the code word 011 and find the code word in the 1st row. As it is in the first row, the receiver conclude that the original sent code word was x = 011 and d(011) = 01 = b.
- Consider the received word is $x_t = 111$. The receiver will search the decoder table for the code word 111 and find the code word in the last row and last column. Then 1st element of the last column will be the actual data x = 110 and d(110) = 11 = b. Here, 1-bit error is corrected by the receiver.
- Suppose the sender sends the data 00 encoded as 000 and the receiver receives the data 110. The the receiver will conclude that the original code word was 11 which is not the actual one. Hence, if the bit error in this example is 2, the the method fails.

6 Syndrome of a code word

Theorem: Given m, n, r = n − m and f_H: Bⁿ → B^m and defined as f_H(x) = x ★ H, then f_H is onto function.
Proof: Let b = b₁b₂...b_r ∈ B^r. Letting x = 00...0b₁b₂...b_r, we obtain x ★ H = b. Thus f_H(x) = b, so f_H is onto.

- Syndrome of x: B^r and B^n/N are isomorphic where $N = ker(f_H) = e_H(B^m)$ under the homomorphism $g: B^n/N \mapsto B^r$ defined by $g(xN) = f_H(x) = x \star$ *H*.Here, the element $x \star H$ called the *Syndrome of x*.
- Theorem: Let x, y ∈ Bⁿ. Then x and y are same left coset of N in Bⁿ if and only if f_H(x) = f_H(y), that is if and only if x and y have the same syndrome.
 Proof: We know that given H is normal sub group of G if a ★ H = b ★ H ⇒ a⁻¹ ★ b ∈ H. Hence ,x,y lies in same left coset of N, if and only if x ⊕ y = (-x) ⊕ y ∈ N. Since, N = ker(f_H), x ⊕ y ∈ N if and only if

$$f_H(x \oplus y) = \bar{0_{B^r}}$$
$$f_H(x) \oplus f_H(y) = \bar{0_{B^r}}$$
$$f_H(x) = f_H(x)$$

7 Modified Decoding function

- Given $e: B^m \mapsto B^n$ is a group code and sender sends the data b encoded as x = e(b) to the receiver.
- Step 1: Determine all the left cosets of $N = e_H(B^m)$ in B^n .
- Step 2: For each coset find the coset leader and find the syndrome of all coset leaders.
- Step 3: If x_t is the received, computer the syndrome of x and find the coset leader ϵ having the same syndrome. Then $x_t \oplus \epsilon = x$ is a code word $e_H(b)$ and $d(x_t) = b$.
- Here, we do not need to keep the entire table of cosets.

8 Example

Given the (3, 6) group $e_H : B^3 \mapsto B^6$ and consider the parity matrix $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The encoding function

e(x)	e(000)	e(001)	e(010)	e(011)	e(100)	e(101)	e(110)	e(111)
$x \in N$	000000	001011	010101	011110	100110	101101	110011	111000

The	Syndro	me Coset	Leader	table
-----	--------	----------	--------	-------

Syndrome of Coset Leader $(x \star \mathbf{H})$	000	001	010	011	100	101	110	111
Coset Leader (ϵ_i)	000000	000001	000010	001000	00100	010000	100000	001100

8.1 Without noise

- Receiver receives the data $x_t = 011110$
 - Step 1: Calculate the syndrome of x_t as $f_H(x_t) = x_t \star H = 011110 \star H = 101$
 - Step 2: Using the Coset Leader table, the coset header is $\epsilon=010000$
 - Step 3: Finally , compute $x=x_t\oplus\epsilon=001110\oplus010000=011110$ and the data is $b=e^{-1}(011110)=011$

8.2 With noise

- Sender send the data $b = 001 \in B^3$ encoded as x = e(001) = 001011
- Receiver receives the data $x_t = 011011$
 - Step 1: Calculate the syndrome of x_t as $f_H(x_t) = x_t \star H = 011011 \star H = 101$
 - Step 2: Using the Coset Leader table, the coset header is $\epsilon = 010000$
 - Step 3: Finally ,compute $x = x_t \oplus \epsilon = 011011 \oplus 010000 = 001011$ and the data is $b = e^{-1}(001011) = 001$

1 bit error message corrected by Receiver

8.3 With noise but erroneous acceptance

- Sender send the data $b = 010 \in B^3$ encoded as x = e(010) = 010101
- Receiver receives the data $x_t = 011111 \in B^6$
 - Step 1: Calculate the syndrome of x_t as $f_H(x_t) = x_t \star H = 011111 \star H = 001$
 - Step 2: Using the Coset Leader table, the coset header is $\epsilon = 000001$
 - Step 3: Finally ,compute $x = x_t \oplus \epsilon = 001110 \oplus 010000 = 011110$ and the data is $b = e^{-1}(011110) = 011$.

Wrong data accepted by Receiver.But why?

Here. the minimum distance of the (m,n) encoding function e is at least 2k + 1 = 3 and d is the maximum likelihood decoding function associated with e \implies the (e,d) can correct at most k = 1 errors.Hence , 2 errors cannot be detected by the receiver.

References

- [1] Bernard Kolman, Robert C. Busby, Sharon Ross *Discrete Mathematical Structures*, Prentics Hall of India.
- [2] S.K.Mapa *Higher Algebra*, Levant Books, India, 4th ed.