Elements of Algebraic Structures DATE: 20-th April,2024 Topic: Application of Coset in Error Correction
Lecture: Sujata Ghosh Presented by: Soumik Guha Roy

Contents

1 Introduction 2
1.1 Definition . 2

2 Group Code 2
2.1 Definition . 2
2.2 Generating Group Code . 3

3 Parity Check Matrix and Encoding function 4
4 Decoding 5
4.1 Maximum likelihood decoding function: 5
4.2 Coset leader . 6
4.3 Construction of decoding table using coset leader 6

5 Basic Decoding function 7
6 Syndrome of a code word 8
7 Modified Decoding function 9
8 Example 10
8.1 Without noise . 10
8.2 With noise . 10
8.3 With noise but erroneous acceptance 11

1 Introduction

1.1 Definition

- Message: The basic unit of information called a message which is finite sequence of characters from a finite alphabet.Here ,our alphabet set is $B=0,1$.
- Word: Basic unit of information,called word, is a sequence of m 0's or 1's.
- Weight: It is defined as the number of 1 's in a code word. the weight of the code word 001 is $|001|=2$.
- Distance: It is defined as the number of differing positions among two same length code word w_{1}, w_{2}. It is denoted by $\delta\left(w_{1}, w_{2}\right)=\left|w_{1} \oplus w_{2}\right|$.Consider two words 1010 and 1011. The distance is $\delta(1010,1011)=|1010 \oplus 1011|=|0001|=1$
- The set $B=\{0,1\}$ is forming a group under the operation ' + ' defined as:

+	0	1
0	0	1
1	1	0

- $B^{m}=B \times B \times B \cdots \times B$ is group under the operation \oplus defined as $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \oplus$ $\left(y_{1}, y_{2}, \ldots, y_{m}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{m}+y_{m}\right)$ and the identity element of $B^{m}=(0,0, \ldots, 0)=\overline{0}$
- Elements of B^{m} will be written as $b_{1}, b_{1}, \ldots, b_{m}$
- Sender sends $x \in B^{m}$ and the receiver receives $x_{t} \in B^{m}$. Due to Noise $x \neq$ x_{t}.Hence, if noise exists then x_{t} can be any element in B^{m}.

2 Group Code

2.1 Definition

- $\left(B^{n}, \oplus\right)$ is a group
- An (m,n) Encoding function $e: B^{m} \mapsto B^{n}$ is called Group Code if $e\left(b^{m}\right)=$ $\left\{e(b) \mid b \in B^{m}\right\}=$ Range (e) is a subgroup of $\left(B^{n}, \oplus\right)$

Example of Group code

- Given an encoding function $e: B^{2} \mapsto B^{3}$ where the odd parity of zero encoding is used. The function is shown below:

B^{2}	B^{3}
00	000
01	011
10	101
11	110

check the composition table of (N, \oplus).

\oplus	000	011	101	110
000	000	011	101	110
011	011	000	110	101
101	101	110	110	011
110	110	101	011	000

Here, (N, \oplus) forming a group and (N, \oplus) is subgroup of $\left(B^{3}, \oplus\right)$.So, (N, \oplus) is a Group code.

- Consider the following encoding function:

B^{2}	B^{3}
00	001
01	010
10	101
11	111

$B^{3}=N=\{001,010,101,111\}$ and $\left(B^{3}, \oplus\right)$ not forming a group.Hence $\left(B^{3}, \oplus\right)$ not a group code.

2.2 Generating Group Code

- Minimum distance of a group code

Theorem 1: Given $e: B^{m} \mapsto B^{n}$ is a group code. The minimum distance of e is the minimum weight of the nonzero code word.

- Theorem 2: Let \mathbf{D} and \mathbf{E} be $m \times p$ Boolean matrices, and let \mathbf{F} be a $p \times n$ Boolean matrix. Then $(\mathbf{D} \oplus \mathbf{E}) \star \mathbf{F}=(\mathbf{D} \star \mathbf{F}) \oplus(\mathbf{E} \star \mathbf{F})$
- Theorem Let $m, n \in \mathbb{N}$ with $m<n$ and $r=n-m$ and let \mathbf{H} be an $n \times r$ Boolean matrix. Then the function $f_{H}: B^{n} \mapsto B^{r}$ defined by $f_{H}(x)=x \star \mathbf{H}$ where $x \in B^{n}$ is a homomorphism from the group B^{n} to B^{r}.

Proof: Let $x, y \in B^{n}$. Then

$$
\begin{aligned}
f_{H}(x \oplus y) & =(x \oplus y) \star H \\
& =(x \star H) \oplus(y \star H)[U \text { singTheorem } 2] \\
& =f_{H}(x) \oplus f_{H}(y)
\end{aligned}
$$

Hence, f_{H} is a homomorphism from B^{m} to B^{n}.

- Corollary 3.1: $N=\left\{x \mid x \in B^{n}, x \star \mathbf{H}=0\right\}$ is a normal subgroup of $\left(B^{n}, \oplus\right)$.
Proof: N is the kernel of the homomorphism f_{H},so it is a normal subgroup of $\left(B^{n}, \oplus\right)$.

3 Parity Check Matrix and Encoding function

- Parity check matrix An $n \times r$ Boolean matrix defined as $\mathbf{H}=$
$\left[\begin{array}{cccc}h_{11} & h_{12} & \ldots & h_{1 r} \\ h_{21} & h_{22} & \ldots & h_{2 r} \\ & & & \\ \ldots & & & \\ h_{m 1} & h_{m 2} & \ldots & h_{m r} \\ 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \ldots & & & \\ 0 & 0 & \ldots & 1\end{array}\right]$
where the last r rows is a identity matrix I_{r}.
- Encoding function using parity check matrix: $e_{H}: B^{m} \mapsto B^{n}$. Let $b=b_{1} b_{2} \ldots b_{m}$ and $x=e_{H}(b)=b_{1} b_{2} \ldots b_{m} x_{1} x_{2} \ldots x_{r}$ where

$$
\begin{align*}
& x_{1}=b_{1} \cdot h_{11}+b_{2} \cdot h_{21}+\cdots+b_{m} \cdot h_{m 1} \\
& x_{2}=b_{1} \cdot h_{12}+b_{2} \cdot h_{22}+\cdots+b_{m} \cdot h_{m 2} \\
& \cdots \tag{1}\\
& x_{r}=b_{1} \cdot h_{1 r}+b_{2} \cdot h_{2 r}+\cdots+b_{m} \cdot h_{m r}
\end{align*}
$$

- Theorem Let $x=y_{1} y_{2} \ldots y_{m} x_{1} x_{2} \ldots x_{r} \in B^{n}$. Then $x \star H=0 \leftrightarrow x=$ $e_{H}(b), b \in B^{m}$
- Corollary $e_{H}\left(B^{m}\right)=\left\{e_{H}(b) \mid b \in B^{m}\right\}$ is a sub group of B^{n}

Example of Encoding

- Given the group code $e_{H}: B^{2} \mapsto B^{5}$ then $m=2, n=5$ and the parity
check matrix $\mathbf{H}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $B^{2}=\{00,01,10,11\}$.
- Then $e(00)=00 x_{1} x_{2} x_{3}$ where $b_{1}=b_{2}=0$ and x_{1}, x_{2}, x_{3} can be obtained from the \mathbf{H} matrix. $x_{1}=x_{2}=x_{3}=0$.Hence, $e(00)=00000$
- Similarly, $e(10)=10 x_{1} x_{2} x_{3}$ where $b_{1}=1, b_{2}=0$ and $x_{1}=x_{2}=1, x_{3}=$ 0 .Hence, $e(01)=10110$
- In the same way, $e(01)=01 x_{1} x_{2} x_{3}$ where $b_{1}=0, b_{2}=1$ and $x_{1}=0, x_{2}=$ $x_{3}=1$.Hence, $e(01)=01011$
- Finally, $e(11)=11 x_{1} x_{2} x_{3}$ where $b_{1}=1, b_{2}=1$ and $x_{1}=1, x_{2}=0, x_{3}=$ 1. Hence, $e(01)=11101$
- Minimum distance of this group code $(2,5)$ is 3 (Why this distance?)

4 Decoding

4.1 Maximum likelihood decoding function:

Given $e_{H}: B^{m} \mapsto B^{n}$.Let us list the code words in a fixed order: $x^{(1)}, x^{(2)}, \ldots, x^{\left(2^{m}\right)}$.Let x_{t} be the received word and compute $\delta\left(x^{(i)}, x_{t}\right) \forall i=1$ to 2^{m} and choose the first code word, $x^{(s)}$ such that min $\delta\left(x^{(i)}, x_{t}\right)=\delta\left(x^{(s)}, x_{t}\right) \forall i=1$ to 2^{m}. Hence, $x^{(s)}$ is the closest code to x_{t} and the first in the list $x^{(1)}, x^{(2)}, \ldots, x^{\left(2^{m}\right)}$. Let $x^{(s)}=e(b)$.Then maximum likelihood decoding function \mathbf{d} associated with e by $d\left(x_{t}\right)=b$ where x_{t} is the received word. The maximum likelihood decoding function d depends on the order
$x^{(1)}, x^{(2)}, \ldots, x^{\left(2^{m}\right)}$.

Theorem: Given that e is an (m, n) encoding function and d is the maximum likelihood decoding function associated with e. Then (e,d) can correct k or fewer errors if and only if the minimum distance of e is at least $2 k+1$.

4.2 Coset leader

Let $e: B^{m} \mapsto B^{n}$ be an (m, n) encoding function.N is set of code words in B^{n} such that $N=\left\{x^{(1)}, x^{(2)}, \ldots, x^{\left(2^{m}\right)}\right\}$ Let $x=e(b)$ where $b \in B^{n}$ is transmitted and received as $x_{t} \in B^{n}$. Left coset of N is $x_{t}+N=\left\{x_{t}+x^{(1)}, x_{t}+x^{(2)}, \ldots, x_{t}+x^{\left(2^{(m)}\right)}\right\}=$ $\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{2^{(m)}}\right\}$ where $\epsilon_{2^{(i)}}=x_{t} \oplus x^{(i)}$. Distance between the received code word x_{t} and $x^{(i)}$ is $\left|\epsilon_{i}\right| \epsilon_{j}$ is a coset member with smallest weight, then $x^{(j)}$ must be the code word that is closest to x_{t}.Here, $x^{j}=\overline{0} \oplus x^{j}=x_{t} \oplus x_{t} \oplus x^{j}=x_{t} \oplus \epsilon_{j}$
Coset Leader An element ϵ_{j} having the smallest weight, called the Coset leader. Coset leader may not be unique

Example of coset leader

Given the encoding function $e: B^{2} \mapsto B^{3}$, which is odd parity of zero function.Hence, $B^{2}=\{00,01,10,11\}$ and $N=$ $B^{3}=\{000,011,101,110\}$ and $B^{3}-N=\{001,010,100,111\}$.

$000=\epsilon_{1}$	$011=\epsilon_{1} \oplus x^{(2)}$	$101=\epsilon_{1} \oplus x^{(3)}$	$110=\epsilon_{1} \oplus x^{(4)}$
$001=\epsilon_{1}$	$010=\epsilon_{2} \oplus x^{(2)}$	$100=\epsilon_{2} \oplus x^{(3)}$	$111=\epsilon_{2} \oplus x^{(4)}$
row $1, \epsilon_{1}$	$=000$ is the coset leader.In the row2, the coset leader is		

4.3 Construction of decoding table using coset leader

Let $N=\left\{x^{(1)}, x^{(2)}, \ldots, x^{\left(2^{m}\right)}\right\}$, where $x^{(1)}$ is $\overline{0}$, the identity element of B^{n}.Now if $x^{(1)} \in N$, then $x^{(1)}+N=\left\{x^{(1)}, x^{(2)}, \ldots, x^{\left(2^{m}\right)}\right\}$.
Now take $y \in B^{n}-N$, then $y \oplus N=\left\{y \oplus x^{(1)}, y \oplus x^{(2)}, \ldots, y \oplus x^{\left(2^{m}\right)}\right.$, $\}$.In the left coset $y \oplus N$ pick an element of least weight,a coset leader, which can be denoted by ϵ_{2}. In case of tie,pick any of the element of least weight.Now as $\epsilon_{2} \in y \oplus N$, we can say that $\epsilon_{2} \oplus N=y \oplus N$. This implies that every word in the coset of $y \oplus N$ can also be written as $\epsilon_{2} \oplus v$ where $v \in N$.We can express the coset $y \oplus N=$

Table 1: Decoding Table

$\overline{0}=\epsilon_{1}$	$x^{(2)}$	$x^{(3)}$	\cdots	$x^{\left(2^{m}-1\right)}$
ϵ_{2}	$\epsilon_{2} \oplus x^{(2)}$	$\epsilon_{2} \oplus x^{(3)}$	\cdots	$\epsilon_{2} \oplus x^{\left(2^{m}-1\right)}$
ϵ_{3}	$\epsilon_{3} \oplus x^{(2)}$	$\epsilon_{3} \oplus x^{(3)}$	\cdots	$\epsilon_{3} \oplus x^{\left(2^{m}-1\right)}$
\vdots	\vdots	\vdots	\vdots	\vdots
$\epsilon_{2^{n-m}}$	$\epsilon_{2^{n-m}} \oplus x^{\left(2^{n-m}\right)}$	$\epsilon_{2^{n-m}} \oplus x^{(3)}$	\cdots	$\epsilon_{2^{n-m}} \oplus x^{\left(2^{m}-1\right)}$

$\left\{\epsilon_{2} \oplus x^{(1)}, \epsilon_{2} \oplus x^{(2)}, \epsilon_{2} \oplus x^{(3)}, \ldots, \epsilon_{2} \oplus x^{\left(2^{m}\right)}\right\}=\left\{\epsilon_{2}, \epsilon_{2} \oplus x^{(2)}, \epsilon_{2} \oplus x^{(3)}, \ldots, \epsilon_{2} \oplus x^{\left(2^{m}\right)}\right\}$. Let $z \in B^{n}-N$ and $z \neq y$. The left coset of $\mathrm{N} z \oplus N=\left\{z \oplus x^{(1)}, z \oplus x^{(2)}, \ldots, z \oplus\right.$ $\left.x^{\left(2^{m}\right)},\right\}=\left\{\epsilon_{3}, \epsilon_{3} \oplus x^{(2)}, \epsilon_{3} \oplus x^{(3)}, \ldots, \epsilon_{3} \oplus x^{\left(2^{m}\right)}\right\}$, where ϵ_{3} is the element in $z \oplus N$ with smallest weight.Hence, the coset leader for $z \oplus N$ is ϵ_{3}.
Continue this process until all elements of B^{n} have been listed. The result is listed in the following table,called the decoding table. The decoding table contains $2^{n-m}=2^{r}$ rows one for each coset of N and 2^{m} columns, that is total 2^{n} elements.
If we receive the word x_{t}, we locate it in the decoding table. If $x \in N$ and x is at the top of the table of the row of x_{t}, then x is the code word which closest to x_{t}. Thus if $x=e(b)$, we let $d\left(x_{t}\right)=b$.

Example of decoding table construction

Given parity	encoding zero funct	unction e n.Hence, $\quad B^{2}$	$\begin{array}{ll} B^{2} & \mapsto \\ = & \{00,01 \end{array}$	which is odd $0,11\}$ and $N=$
$B^{3}=$	\{000, 011, 101	$110\}$ and	$-N$	$\{001,010,100,111\}$.
$000=\epsilon_{1}$	$011=\epsilon_{1} \oplus x^{(2)}$	$101=\epsilon_{1} \oplus x^{(3)}$	$110=\epsilon_{1} \oplus x^{(4)}$	
$001=\epsilon_{1}$	$010=\epsilon_{2} \oplus x^{(2)}$	$100=\epsilon_{2} \oplus x^{(3)}$	$111=\epsilon_{2} \oplus x^{(4)}$	

5 Basic Decoding function

- Given $e: B^{m} \mapsto B^{n}$ is a group code and sender sends the data b encoded as $x=e(b)$ to the receiver.
- Step 1: Determine all the left cosets of $N=e\left(B^{m}\right)$
- Step 2: For each coset, find the coset header (a word with smallest weight)
- Step 3: Determine in which coset of N, x_{t} belongs.[As N is normal subgroup of B^{n}, due to partition of N, x_{t} will be in exactly one coset among 2^{n-m}]
- Step 4: Let ϵ be the coset leader as determined in Step 3.Compute $x=x_{t} \oplus \epsilon$. If $e(b)=x$, then $d\left(x_{t}\right)=b$.Hence, receiver decodes x_{t} as \mathbf{b}.
- The main problem of this algorithm is the calculation of the entire table containing all the coset elements.

Example of decoding using the decoding table

Given the encoding function $e: B^{2} \mapsto B^{3}$, which is odd parity of zero function.Hence, $B^{2}=\{00,01,10,11\}$ and $N=B^{3}=\{000,011,101,110\}$ and $B^{3}-N=$ $\{001,010,100,111\}$. The encoding function is

b	00	01	10	11
$e(b)$	000	011	101	110

$000=\epsilon_{1}$	$011=\epsilon_{1} \oplus x^{(2)}$	$101=\epsilon_{1} \oplus x^{(3)}$	$110=\epsilon_{1} \oplus x^{(4)}$
$001=\epsilon_{1}$	$010=\epsilon_{2} \oplus x^{(2)}$	$100=\epsilon_{2} \oplus x^{(3)}$	$111=\epsilon_{2} \oplus x^{(4)}$

- Consider the received word is $x_{t}=011$. The receiver will search the decoder table for the code word 011 and find the code word in the 1st row.As it is in the first row, the receiver conclude that the original sent code word was $x=011$ and $d(011)=01=b$.
- Consider the received word is $x_{t}=111$.The receiver will search the decoder table for the code word 111 and find the code word in the last row and last column.Then 1st element of the last column will be the actual data $x=110$ and $d(110)=11=b$.Here,1-bit error is corrected by the receiver.
- Suppose the sender sends the data 00 encoded as 000 and the receiver receives the data 110 . The the receiver will conclude that the original code word was 11 which is not the actual one.Hence, if the bit error in this example is 2 , the the method fails.

6 Syndrome of a code word

- Theorem: Given $m, n, r=n-m$ and $f_{H}: B^{n} \mapsto B^{m}$ and defined as $f_{H}(x)=$ $x \star H$, then f_{H} is onto function.
Proof: Let $b=b_{1} b_{2} \ldots b_{r} \in B^{r}$. Letting $x=00 \ldots 0 b_{1} b_{2} \ldots b_{r}$, we obtain $x \star H=b$. Thus $f_{H}(x)=b$,so f_{H} is onto.
- Syndrome of x: B^{r} and B^{n} / N are isomorphic where $N=\operatorname{ker}\left(f_{H}\right)=e_{H}\left(B^{m}\right)$ under the homomorphism $g: B^{n} / N \mapsto B^{r}$ defined by $g(x N)=f_{H}(x)=x \star$ H.Here, the element $x \star H$ called the Syndrome of x.
- Theorem: Let $x, y \in B^{n}$.Then x and y are same left coset of N in B^{n} if and only if $f_{H}(x)=f_{H}(y)$, that is if and only if x and y have the same syndrome.
Proof: We know that given H is normal sub group of G if $a \star H=b \star H \Longrightarrow$ $a^{-1} \star b \in H$.Hence , x, y lies in same left coset of N , if and only if $x \oplus y=$ $(-x) \oplus y \in N$. Since, $N=\operatorname{ker}\left(f_{H}\right), x \oplus y \in N$ if and only if

$$
\begin{aligned}
f_{H}(x \oplus y) & =0_{B^{r}}^{-} \\
f_{H}(x) \oplus f_{H}(y) & =0_{B^{r}}^{-} \\
f_{H}(x) & =f_{H}(x)
\end{aligned}
$$

7 Modified Decoding function

- Given $e: B^{m} \mapsto B^{n}$ is a group code and sender sends the data b encoded as $x=e(b)$ to the receiver.
- Step 1: Determine all the left cosets of $N=e_{H}\left(B^{m}\right)$ in B^{n}.
- Step 2: For each coset find the coset leader and find the syndrome of all coset leaders.
- Step 3: If x_{t} is the received, computer the syndrome of x and find the coset leader ϵ having the same syndrome. Then $x_{t} \oplus \epsilon=x$ is a code word $e_{H}(b)$ and $d\left(x_{t}\right)=b$.
- Here, we donot need to keep the entire table of cosets.

8 Example

Given the $(3,6)$ group $e_{H}: B^{3} \mapsto B^{6}$ and consider the parity matrix $\mathbf{H}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
The encoding function

$e(x)$	$e(000)$	$e(001)$	$e(010)$	$e(011)$	$e(100)$	$e(101)$	$e(110)$	$e(111)$
$x \in N$	000000	001011	010101	011110	100110	101101	110011	111000

The Syndrome Coset Leader table

Syndrome of Coset Leader $(x \star \mathbf{H})$	000	001	010	011	100	101	110	111
Coset Leader $\left(\epsilon_{i}\right)$	000000	000001	000010	001000	00100	010000	100000	001100

8.1 Without noise

- Sender send the data $b=011 \in B^{3}$ encoded as $x=e(011)=011110$
- Receiver receives the data $x_{t}=011110$
- Step 1: Calculate the syndrome of x_{t} as $f_{H}\left(x_{t}\right)=x_{t} \star H=011110 \star H=101$
- Step 2: Using the Coset Leader table, the coset header is $\epsilon=010000$
- Step 3: Finally ,compute $x=x_{t} \oplus \epsilon=001110 \oplus 010000=011110$ and the data is $b=e^{-1}(011110)=011$

8.2 With noise

- Sender send the data $b=001 \in B^{3}$ encoded as $x=e(001)=001011$
- Receiver receives the data $x_{t}=011011$
- Step 1: Calculate the syndrome of x_{t} as $f_{H}\left(x_{t}\right)=x_{t} \star H=011011 \star H=101$
- Step 2: Using the Coset Leader table, the coset header is $\epsilon=010000$
- Step 3: Finally, compute $x=x_{t} \oplus \epsilon=011011 \oplus 010000=001011$ and the data is $b=e^{-1}(001011)=001$

1 bit error message corrected by Receiver

8.3 With noise but erroneous acceptance

- Sender send the data $b=010 \in B^{3}$ encoded as $x=e(010)=010101$
- Receiver receives the data $x_{t}=011111 \in B^{6}$
- Step 1: Calculate the syndrome of x_{t} as $f_{H}\left(x_{t}\right)=x_{t} \star H=011111 \star H=001$
- Step 2: Using the Coset Leader table, the coset header is $\epsilon=000001$
- Step 3: Finally ,compute $x=x_{t} \oplus \epsilon=001110 \oplus 010000=011110$ and the data is $b=e^{-1}(011110)=011$.

Wrong data accepted by Receiver.But why?

Here. the minimun distance of the (m, n) encoding function e is atleast $2 k+1=3$ and d is the maximum likelihood decoding function associated with $\mathrm{e} \Longrightarrow$ the (e, d) can correct atmost $k=1$ errors.Hence, 2 errors cannot be detected by the receiver.

References

[1] Bernard Kolman,Robert C.Busby,Sharon Ross Discrete Mathematical Structures, Prentics Hall of India.
[2] S.K.Mapa Higher Algebra, Levant Books,India, 4th ed.

