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Coding of Binary Information and Error Detection
• The basic unit of information called a message which is finite sequence of characters

from a finite alphabet.Here ,our alphabet set is B = 0,1.
• Basic unit of information,called word, is a sequence of m 0’s or 1’s.

• The set B = {0,1} is forming a group under the operation ’+’ defined as:
+ 0 1
0 0 1
1 1 0

• Bm = B × B × B · · · × B is group under the operation ⊕ defined as
(x1, x2, . . . , xm)⊕ (y1, y2, . . . , ym) = (x1 + y1, x2 + y2, . . . , xm + ym) and the identity element
of Bm = (0,0, . . . ,0) = 0̄

• Elements of Bm will be written as b1,b1, . . . ,bm

• Sender sends x ∈ Bn and the receiver recives xt ∈ Bn. Due to Noise x ̸= xt .Hence,if noise
exists then xt can be any element in Bn.

• Basic task is to reduce the likelihood of receiving data.How?
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Definition

• Encoding function (m,n) Choose m,n ∈ Z such that n > m and a one to one function
e : Bm 7→ Bn

• Decoding function (n,m) associated with an encoding fucntion e is an onto function
d : Bn 7→ Bm
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Definition

• (Bn,⊕) is a group
• An (m,n) Encoding function e : Bm 7→ Bn is called Group Code if

e(bm) = {e(b)|b ∈ Bm} = Range(e) is a subgroup of (Bn,⊕)
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Generating Group Code

• Minimum distance of a group code
Theorem 1: Given e : Bm 7→ Bn is a group code. The minimum distance of e is the
minimum weight of the nonzero code word.

• Theorem 2: Let D and E be m × p Boolean matrices, and let F be a p × n Boolean matrix.
Then (D⊕ E) ⋆ F = (D ⋆ F)⊕ (E ⋆ F)

• Theorem 3: Let m,n ∈ N with m < n and r = n − m and let H be an n × r Boolean matrix.
Then the function fH : Bn 7→ Br defined by fH(x) = x ⋆H where x ∈ Bn is a homomorphism
from the group Bn to Br .

• Corollary 3.1: N = {x |x ∈ Bn, x ⋆H = 0} is a normal subgroup of (Bn,⊕).
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Parity Check Matrix and Encoding function

• Parity check matrix An n × r Boolean matrix defined as H =


h11 h12 . . . h1r
h21 h22 . . . h2r

. . .
hm1 hm2 . . . hmr

1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

 where

the last r rows is a identity matrix Ir .
• Encoding function using parity check matrix: eH : Bm 7→ Bn.Let b = b1b2 . . . bm and

x = eH(b) = b1b2 . . . bmx1x2 . . . xr where

x1 = b1.h11 + b2.h21 + · · · + bm.hm1

x2 = b1.h12 + b2.h22 + · · · + bm.hm2

. . . (1)

xr = b1.h1r + b2.h2r + · · · + bm.hmr

• Theorem Let x = y1y2 . . . ymx1x2 . . . xr ∈ Bn. Then x ⋆ H = 0 ↔ x = eH(b),b ∈ Bm

• Corollary eH(Bm) = {eH(b)|b ∈ Bm} is a sub group of Bn
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Example of Encoding
• Given the group code eH : B2 7→ B5 then m = 2,n = 5 and the parity check matrix

H =

[
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

]
• B2 = {00,01,10,11}.
• Then e(00) = 00x1x2x3 where b1 = b2 = 0 and x1, x2, x3 can be obtained from the H matrix

.x1 = x2 = x3 = 0.Hence, e(00) = 00000
• Similarly,e(10) = 10x1x2x3 where b1 = 1,b2 = 0 and

x1 = x2 = 1, x3 = 0.Hence,e(01) = 10110
• In the same way, e(01) = 01x1x2x3 where b1 = 0,b2 = 1 and

x1 = 0, x2 = x3 = 1.Hence,e(01) = 01011
• Finally, e(11) = 11x1x2x3 where b1 = 1,b2 = 1 and

x1 = 1, x2 = 0, x3 = 1.Hence,e(01) = 11101
• Minimum distance of this group code (2,5) is 3 (Why this distance?)
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Definition

• Maximum likelihood decoding function: Given eH : Bm 7→ Bn. Let us list the code
words in a fixed order: x (1), x (2), . . . , x (2m)

• Let xt be the received word and compute δ(x (i), xt)∀i = 1 to 2m and choose the first code
word , x (s) such that min δ(x (i), xt) = δ(x (s), xt) ∀i = 1 to 2m. Hence,x (s) is the closest code
to xt and the first in the list x (1), x (2), . . . , x (2m)

• Let x (s) = e(b).Then maximum likelihood decoding function d associated with e by
d(xt) = b where xt is the received word.

• The maximum likelihood decoding function d depends on the order x (1), x (2), . . . , x (2m).
• Theorem: Given that e is an (m,n) encoding function and d is the maximum likelihood

decoding function associated with e. Then (e,d) can correct k or fewer erros if and only if
the minimum distance of e is atleast 2k + 1.
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Coset Leader

• Let e : Bm 7→ Bn be an (m,n) encoding function.N is set of code words in Bn such that
N = {x (1), x (2), . . . , x (2m)}

• Let x = e(b) where b ∈ Bm is transmitted and received as xt ∈ Bn. Left coset of N is
xt + N = {xt + x (1), xt + x (2), . . . , xt + x (2(m))} = {ϵ1, ϵ2, . . . , ϵ2(m)} where ϵ2(i) = xt ⊕ x (i).

• Distance between the received code word xt and x (i) is |ϵi |
• ϵj is a coset member with smallest weight, then x (j) must be the code word that is closest to

xt .Here, x j = 0̄ ⊕ x j = xt ⊕ xt ⊕ x j = xt ⊕ ϵj
• Coset Leader An element ϵj having the smallest weight,called the Coset leader.

• Coset leader may not be unique
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Basic Decoding function

• Given e : Bm 7→ Bn is a group code and sender sends the data b encoded as x = e(b) to
the receiver.

• Step 1: Determine all the left cosets of N = e(Bm)

• Step 2: For each coset, find the coset header( a word with smallest weight)
• Step 3: Determine in which coset of N, xt belongs.[ As N is normal subgroup of Bn ,due to

partition of N, xt will be in exactly one coset among 2n−m ]
• Step 4: Let ϵ be the coset leader as determined in Step 3.Compute x = xt ⊕ ϵ. If e(b) = x ,

then d(xt) = b.Hence, receiver decodes xt as b.
• The main problem of this algorithm is the calculation of the entire table containing all

the coset elements.
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Syndrome of a code word

• Theorem: Given m,n, r = n − m and fH : Bn 7→ Bm and defined as fH(x) = x ⋆ H , then fH is
onto function.

• Syndrome of x: Br and Bn/N are isomorphic where N = ker(fH) = eH(Bm) under the
homomorphism g : Bn/N 7→ Br defined by g(xN) = fH(x) = x ⋆ H.Here , the element x ⋆ H
called the Syndrome of x.

• Theorem: Let x , y ∈ Bn.Then x and y are same left coset of N in Bn if and only if
fH(x) = fH(y), that is if and only if x and y have the same syndrome.
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Modified Decoding function

• Given e : Bm 7→ Bn is a group code and sender sends the data b encoded as x = e(b) to
the receiver.

• Step 1: Determine all the left cosets of N = eH(Bm) in Bn.
• Step 2: For each coset find the coset leader and find the syndrome of all coset leaders.
• Step 3: If xt is the received, computer the syndrome of x and find the coset leader ϵ

having the same syndrome. Then xt ⊕ ϵ = x is a code word eH(b) and d(xt) = b.
• Here, we donot need to keep the entire table of cosets.
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Example 1

Given the (3,6) group eH : B3 7→ B6 and consider the parity matrix H =

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1


The encoding function

e(x) e(000) e(001) e(010) e(011) e(100) e(101) e(110) e(111)
x ∈ N 000000 001011 010101 011110 100110 101101 110011 111000

The Syndrome Coset Leader table
Syndrome of Coset Leader (x ⋆ H) 000 001 010 011 100 101 110 111

Coset Leader (ϵi ) 000000 000001 000010 001000 00100 010000 100000 001100
• Sender send the data b = 011 ∈ B3 encoded as x = e(011) = 011110
• Receiver receives the data xt = 011110

• Step 1: Calculate the syndrome of xt as fH(xt) = xt ⋆ H = 011110 ⋆ H = 101
• Step 2: Using the Coset Leader table, the coset header is ϵ = 010000
• Step 3: Finally ,compute x = xt ⊕ ϵ = 001110 ⊕ 010000 = 011110 and the data is

b = e−1(011110) = 011
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Example 1

Given the (3,6) group eH : B3 7→ B6 and consider the parity matrix H =

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1


The encoding function

e(000) e(001) e(010) e(011) e(100) e(101) e(110) e(111)
000000 001011 010101 011110 100110 101101 110011 111000

The Syndrome Coset Leader table
Syndrome of Coset Leader (x ⋆ H) 000 001 010 011 100 101 110 111

Coset Leader (ϵi ) 000000 000001 000010 001000 00100 010000 100000 001100
• Sender send the data b = 001 ∈ B3 encoded as x = e(001) = 001011
• Receiver receives the data xt = 011011

• Step 1: Calculate the syndrome of xt as fH(xt) = xt ⋆ H = 011011 ⋆ H = 101
• Step 2: Using the Coset Leader table, the coset header is ϵ = 010000
• Step 3: Finally ,compute x = xt ⊕ ϵ = 011011 ⊕ 010000 = 001011 and the data is

b = e−1(001011) = 001
1 bit error message corrected by Receiver
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Example 3

Given the (3,6) group eH : B3 7→ B6 and consider the parity matrix H =

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1


The encoding function

e(000) e(001) e(010) e(011) e(100) e(101) e(110) e(111)
000000 001011 010101 011110 100110 101101 110011 111000

The Syndrome Coset Leader table
Syndrome of Coset Leader (x ⋆ H) 000 001 010 011 100 101 110 111

Coset Leader (ϵi ) 000000 000001 000010 001000 00100 010000 100000 001100
• Sender send the data b = 010 ∈ B3 encoded as x = e(010) = 010101
• Receiver receives the data xt = 011111 ∈ B6

• Step 1: Calculate the syndrome of xt as fH(xt) = xt ⋆ H = 011111 ⋆ H = 001
• Step 2: Using the Coset Leader table, the coset header is ϵ = 000001
• Step 3: Finally ,compute x = xt ⊕ ϵ = 001110 ⊕ 010000 = 011110 and the data is

b = e−1(011110) = 011.
Wrong data accepted by Receiver.But why?
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