

Application of Coset in Error Correction

Soumik Guha Roy

Junior Research Fellow in Computer Science Machine Intelligence Unit

20-April-2024

▲□▶▲□▶▲글▶▲글▶ 글 のQ@

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタペ

Presentation Overview

- Introduction
- 2 Encoding and Decoding function
- Group Code
- 4 Encoding Function
- **6** Decoding function
- 6 Error Correction in the absence of error
- Perror Correction in presence of error
- 8 Limitation

Coding of Binary Information and Error Detection

- The basic unit of information called a **message** which is finite sequence of characters from a finite alphabet. Here , our alphabet set is B = 0, 1.
- Basic unit of information, called **word**, is a sequence of m 0's or 1's.
- The set $B = \{0, 1\}$ is forming a **group** under the operation '+' defined as:

- $B^m = B \times B \times B \cdots \times B$ is group under the operation \oplus defined as $(x_1, x_2, \dots, x_m) \oplus (y_1, y_2, \dots, y_m) = (x_1 + y_1, x_2 + y_2, \dots, x_m + y_m)$ and the **identity element** of $B^m = (0, 0, \dots, 0) = \overline{0}$
- Elements of B^m will be written as b_1, b_1, \ldots, b_m
- Sender sends $x \in B^n$ and the receiver recives $x_t \in B^n$. Due to **Noise** $x \neq x_t$. Hence, if noise exists then x_t can be any element in B^n .
- Basic task is to reduce the likelihood of receiving data. How?

Definition

- Encoding function (m,n) Choose $m, n \in \mathbb{Z}$ such that n > m and a one to one function $e: B^m \mapsto B^n$
- Decoding function (n,m) associated with an encoding fucntion e is an onto function d : Bⁿ → B^m

- (*B*^{*n*}, ⊕) is a group
- An (m,n) Encoding function $e : B^m \mapsto B^n$ is called **Group Code** if $e(b^m) = \{e(b) | b \in B^m\} = Range(e)$ is a subgroup of (B^n, \oplus)

0.0

Introduction Encoding and Decoding function Group Code Encoding Function Decoding function Error Correction in the absence of error Error Correction in presence of error Limitat

Generating Group Code

Minimum distance of a group code

Theorem 1: Given $e: B^m \mapsto B^n$ is a group code. The *minimum distance of e* is the minimum weight of the nonzero code word.

- Theorem 2: Let D and E be *m* × *p* Boolean matrices, and let F be a *p* × *n* Boolean matrix. Then (D ⊕ E) ★ F = (D ★ F) ⊕ (E ★ F)
- **Theorem 3:** Let $m, n \in \mathbb{N}$ with m < n and r = n m and let **H** be an $n \times r$ Boolean matrix. Then the function $f_H : B^n \mapsto B^r$ defined by $f_H(x) = x \star \mathbf{H}$ where $x \in B^n$ is a homomorphism from the group B^n to B^r .
 - **Corollary 3.1:** $N = \{x | x \in B^n, x \star H = 0\}$ is a normal subgroup of (B^n, \oplus) .

Parity Check Matrix and Encoding function

Parity check matrix An $n \times r$ Boolean matrix defined as $\mathbf{H} = \begin{bmatrix} n_{11} & h_{12} & \cdots & h_{1r} \\ h_{21} & h_{22} & \cdots & h_{2r} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$ where

the last r rows is a identity matrix I_r .

Encoding function using parity check matrix: $e_H : B^m \mapsto B^n$.Let $b = b_1 b_2 \dots b_m$ and $x = e_H(b) = b_1 b_2 \dots b_m x_1 x_2 \dots x_r$ where

$$x_{1} = b_{1} \cdot h_{11} + b_{2} \cdot h_{21} + \dots + b_{m} \cdot h_{m1}$$

$$x_{2} = b_{1} \cdot h_{12} + b_{2} \cdot h_{22} + \dots + b_{m} \cdot h_{m2}$$

$$\dots$$

$$x_{r} = b_{1} \cdot h_{1r} + b_{2} \cdot h_{2r} + \dots + b_{m} \cdot h_{mr}$$

(1)

- **Theorem** Let $x = y_1 y_2 \dots y_m x_1 x_2 \dots x_r \in B^n$. Then $x \star H = 0 \leftrightarrow x = e_H(b), b \in B^m$
 - Corollary $e_H(B^m) = \{e_H(b) | b \in B^m\}$ is a sub group of B^n

Example of Encoding

- Given the group code $e_H : B^2 \mapsto B^5$ then m = 2, n = 5 and the parity check matrix
 - $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- $B^2 = \{00, 01, 10, 11\}.$
- Then $e(00) = 00x_1x_2x_3$ where $b_1 = b_2 = 0$ and x_1, x_2, x_3 can be obtained from the **H** matrix $.x_1 = x_2 = x_3 = 0$. Hence, e(00) = 00000
- Similarly, $e(10) = 10x_1x_2x_3$ where $b_1 = 1, b_2 = 0$ and $x_1 = x_2 = 1, x_3 = 0$. Hence, e(01) = 10110
- In the same way, $e(01) = 01x_1x_2x_3$ where $b_1 = 0, b_2 = 1$ and $x_1 = 0, x_2 = x_3 = 1$. Hence, e(01) = 01011
- Finally, $e(11) = 11x_1x_2x_3$ where $b_1 = 1, b_2 = 1$ and $x_1 = 1, x_2 = 0, x_3 = 1$.Hence, e(01) = 11101
- Minimum distance of this group code (2,5) is 3 (Why this distance?)

Definition

- Maximum likelihood decoding function: Given $e_H : B^m \mapsto B^n$. Let us list the code words in a fixed order: $x^{(1)}, x^{(2)}, \ldots, x^{(2^m)}$
- Let x_t be the received word and compute $\delta(x^{(i)}, x_t) \forall i = 1$ to 2^m and choose the first code word, $x^{(s)}$ such that min $\delta(x^{(i)}, x_t) = \delta(x^{(s)}, x_t) \forall i = 1$ to 2^m . Hence, $x^{(s)}$ is the closest code to x_t and the first in the list $x^{(1)}, x^{(2)}, \ldots, x^{(2^m)}$
- Let $x^{(s)} = e(b)$. Then **maximum likelihood decoding function d** associated with e by $d(x_t) = b$ where x_t is the received word.
- The maximum likelihood decoding function d depends on the order $x^{(1)}, x^{(2)}, \ldots, x^{(2^m)}$.
- **Theorem:** Given that e is an (m, n) encoding function and d is the maximum likelihood decoding function associated with e. Then (e,d) can correct k or fewer erros if and only if the minimum distance of e is atleast 2k + 1.

Coset Leader

- Let $e: B^m \mapsto B^n$ be an (m, n) encoding function. N is set of code words in B^n such that $N = \{x^{(1)}, x^{(2)}, \dots, x^{(2^m)}\}$
- Let x = e(b) where $b \in B^m$ is transmitted and received as $x_t \in B^n$. Left coset of N is
 - $x_t + N = \{x_t + x^{(1)}, x_t + x^{(2)}, \dots, x_t + x^{(2^{(m)})}\} = \{\epsilon_1, \epsilon_2, \dots, \epsilon_{2^{(m)}}\}$ where $\epsilon_{2^{(i)}} = x_t \oplus x^{(i)}$.
 - Distance between the received code word x_t and $x^{(i)}$ is $|\epsilon_i|$
 - ϵ_j is a coset member with smallest weight, then $x^{(j)}$ must be the code word that is closest to x_t . Here, $x^j = \overline{0} \oplus x^j = x_t \oplus x_t \oplus x^j = x_t \oplus \epsilon_j$

< ロ > < 同 > < E > < E > < E > < O < O</p>

- **Coset Leader** An element ϵ_j having the smallest weight, called the *Coset leader*.
 - Coset leader may not be unique

Basic Decoding function

- Given *e* : *B^m* → *Bⁿ* is a group code and sender sends the data b encoded as *x* = *e*(*b*) to the receiver.
- **Step 1:** Determine all the left cosets of *N* = *e*(*B^m*)
- Step 2: For each coset, find the coset header(a word with smallest weight)
- **Step 3:** Determine in which coset of N, x_t belongs.[As N is normal subgroup of B^n , due to partition of N, x_t will be in exactly one coset among 2^{n-m}]
- **Step 4:** Let ϵ be the coset leader as determined in Step 3.Compute $x = x_t \oplus \epsilon$. If e(b) = x, then $d(x_t) = b$. Hence, receiver decodes x_t as b.
- The **main problem of this algorithm** is the calculation of the entire table containing all the coset elements.

Syndrome of a code word

- **Theorem:** Given m, n, r = n m and $f_H : B^n \mapsto B^m$ and defined as $f_H(x) = x \star H$, then f_H is onto function.
- **Syndrome of x:** B^r and B^n/N are isomorphic where $N = ker(f_H) = e_H(B^m)$ under the homomorphism $g : B^n/N \mapsto B^r$ defined by $g(xN) = f_H(x) = x \star H$. Here, the element $x \star H$ called the *Syndrome of x*.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタペ

• **Theorem:** Let $x, y \in B^n$. Then x and y are same left coset of N in B^n if and only if $f_H(x) = f_H(y)$, that is if and only if x and y have the same syndrome.

Modified Decoding function

- Given *e* : *B^m* → *Bⁿ* is a group code and sender sends the data b encoded as *x* = *e*(*b*) to the receiver.
- **Step 1:** Determine all the left cosets of $N = e_H(B^m)$ in B^n .
- **Step 2:** For each coset find the coset leader and find the syndrome of all coset leaders.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタペ

- **Step 3:** If x_t is the received, computer the syndrome of x and find the coset leader ϵ having the same syndrome. Then $x_t \oplus \epsilon = x$ is a code word $e_H(b)$ and $d(x_t) = b$.
- Here, we donot need to keep the entire table of cosets.

Example 1

Given the (3,6) group $e_H : B^3 \mapsto B^6$ and consider the parity matrix $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The encoding function

		0									
ĺ	<i>e</i> (<i>x</i>)	<i>e</i> (000)	<i>e</i> (001)	<i>e</i> (010)	<i>e</i> (011)	<i>e</i> (100) <i>e</i> (10	1) <i>e</i> (*	110) <i>e</i>	(111)	
ſ	$x \in N$	000000	001011	010101	011110	0 10011	0 1011	01 110	0011 1 <i>°</i>	11000	
	The Syn	drome Co	oset Leac	ler table							
ſ	Syndrome	e of Coset Lea	der (<i>x</i> * H)	000	001	010	011	100	101	110	111
	C	öset Leader ((ϵ_i)	000000	000001	000010	001000	00100	010000	100000	00110

- Sender send the data $b = 011 \in B^3$ encoded as x = e(011) = 011110
- Receiver receives the data $x_t = 011110$
 - Step 1: Calculate the syndrome of x_t as $f_H(x_t) = x_t \star H = 011110 \star H = 101$
 - Step 2: Using the Coset Leader table, the coset header is $\epsilon = 010000$
 - Step 3: Finally ,compute $x = x_t \oplus \epsilon = 001110 \oplus 010000 = 011110$ and the data is $b = e^{-1}(011110) = 011$

Example 1

Given the (3,6) group $e_H : B^3 \mapsto B^6$ and consider the parity matrix $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

The encoding function

	0										
<i>e</i> (000)	<i>e</i> (001)	<i>e</i> (010) <i>e</i> (01	1) <i>e</i> (1	00) <i>e</i> (101)	<i>e</i> (11	10) e	e(111)		
000000	001011	01010	1 0111	10 100	110 10	1101	1100	011 1	11000		
The Syndi	rome Cos	set Leac	ler table	1							
Syndrome of	f Coset Leade	er (<i>x</i> * H)	000	001	010	01	1	100	101	110	111
Cos	et Leader (ϵ_i))	000000	000001	000010	001	000 (00100	010000	100000	001100

- Sender send the data $b = 001 \in B^3$ encoded as x = e(001) = 001011
- Receiver receives the data $x_t = 011011$
 - Step 1: Calculate the syndrome of x_t as $f_H(x_t) = x_t \star H = 011011 \star H = 101$
 - Step 2: Using the Coset Leader table, the coset header is $\epsilon = 010000$
 - Step 3: Finally ,compute $x = x_t \oplus \epsilon = 011011 \oplus 010000 = 001011$ and the data is $b = e^{-1}(001011) = 001$

1 bit error message corrected by Receiver

Example 3

Given the (3, 6) group $e_H : B^3 \mapsto B^6$ and consider the parity matrix $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The encoding function

	=(000)	e(001)	م(110)	$\rho(011)$	$\rho(100)$	$\rho(101)$	$\rho(110)$	$\rho(111)$
	0000)	001)	0(010)		0(100)	0(101)	0(110)	0(111)
ĺ	000000	001011	010101	011110	100110	101101	110011	111000

The Syndrome Coset Leader table

Syndrome of Coset Leader ($x \star H$)	000	001	010	011	100	101	110	111
Coset Leader (ϵ_i)	000000	000001	000010	001000	00100	010000	100000	001100

- Sender send the data $b = 010 \in B^3$ encoded as x = e(010) = 010101
- Receiver receives the data $x_t = 011111 \in B^6$
 - Step 1: Calculate the syndrome of x_t as $f_H(x_t) = x_t \star H = 011111 \star H = 001$
 - Step 2: Using the Coset Leader table, the coset header is $\epsilon = 000001$
 - Step 3: Finally ,compute $x = x_t \oplus \epsilon = 001110 \oplus 010000 = 011110$ and the data is $b = e^{-1}(011110) = 011$.

Wrong data accepted by Receiver.But why?

References

- Bernard Kolman,Robert C.Busby,Sharon Ross *Discrete Mathematical Structures*, Prentics Hall of India.
- S.K.Mapa *Higher Algebra*, Levant Books,India, 4th ed.

Thanks for your attention

▲□▶ ▲御▶ ★臣▶ ★臣▶ ―臣 _ の�@