Necklace Design Problem

Introduction

In this article we will discuss about counting number of different
designs of a necklace. Suppose a necklace has n beads and beads are
of two types. Now different designs can be made by arranging the
beads. Again one design can be reached from another design by
rotating / reflecting the necklace. We are interested to find minimum
number of designs by which all other designs cab be reached. In the
figure below, among the 4 bead necklaces, we can reach the left
sided necklace from the middle one but cannot reach the right sided
necklace.



Algebraic Theorem to solve these kind of problem

Defining Orbit and Stabilizer of a group:

* Consider a group G that acts on a set S.

« Stahilizer of an element of S is defined as follows:
Let G be a group of permutations of a set S. For each i in S, let stab (i) =
{d € G| $(i) = i}. We call stab (i) the stabilizer of i in G.

* Orbit of an element of S is defined as follows:

Let G be a group of permutations of a set S. For each s in §, let orb(s) =
{&(s) | ¢ € G). The set orb,(s) is a subset of S called the orbit of s
under GG. We use |lorb(s)! to denote the number of elements in orb(s).

An example of orbit and stabilizer of a group:

* A group G defined as follows on Sg:

G = {(1), (132)(465)(78), (132)(465), (123)(456),
(123)(456)(78), (78)}.

Then

orby(1) = {1, 3, 2}, stab (1) = {(1), (78)},

orb(2) = {2, 1, 3}, stab.(2) = {(1), (78)},

orb,(4) = {4,6,5]}, stab(4) = {(1), (78)},

orb(7) = {7, 8}, stab .(7) = {(1), (132)(465), (123)(456)}.

Lagrange’s Theorem:

Statement:

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Moreover, the number of distinct left (right) cosets of H in G is |G|/|H|.



Proof:

LetaH, a,H, ..., a H denote the distinct left cosets of H in
G. Then, for each a in G, we have aH = aH for some i. Also, by prop-
erty 1 of the lemma, a € aH. Thus, each member of G belongs to one
of the cosets aH.In symbols,

G=aH\l) < Uaqgl,
Now, property 4 of the lemma shows that this union is disjoint, so that
|Gl = laH| + la,H| + - - -+ |la H|.
Finally, since la H| = |H| for each i, we have |G| = rlHI.

Orbit Stabilizer Theorem:

Statement:

Let G be a finite group of permutations of a set S. Then, for
any i from S, |G| = lorb(i)| |stab(i)\.

Proof:

By Lagrange’s Theorem, |Gl/Istab (i) is the number of dis-
tinct left cosets of stab (i) in G. Thus, it suffices to establish a one-
to-one correspondence between the left cosets of stab.(i) and the
elements in the orbit of i. To do this, we define a correspondence T
by mapping the coset ¢stab (i) to ¢(7) under 7. To show that T'is a well-
defined function, we must show that astab (i) = Bstab (i) implies a(i) =
B(i). But astab(i) = PBstab(i) implies o 'B € stab (i), so that
(e 'B) (i) = i and, therefore, B(i) = a(i). Reversing the argument from
the last step to the first step shows that 7'is also one-to-one. We conclude
the proof by showing that 7'is onto orb (7). Let j € orb.(7). Then a(i) = j
for some € G and clearly T(astab(i)) = a(i) = j, so that T'is onto.



Burnside Theorem:
Statement:

If G is a finite group of permutations on a set S, then the number
of orbits of elements of S under G is

1
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Proof:

Let n denote the number of pairs (¢, i), withd € G, i € S,
and ¢(i) = i. We begin by counting these pairs in two ways. First, for
each particular ¢ in G, the number of such pairs is exactly Ifix(¢)l. So,

n= > |fix(d)]. (1)
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Second, for each particular 7 in S, observe that Istab(’.(i)l is exactly the
number of pairs (¢, i) for which ¢(i) = i. So,
n = |stabg(i)]. (2)

ies

It follows from Exercise 33 in Chapter 7 that if s and f are in the same
orbit of G, then orb (s) = orb (1), and thus by the Orbit-Stabilizer The-
orem (Theorem 7.3) we have Istab(,.(s)l = lGl/IorbG(.s-)l = IGl/IorbG(t)I =
Istab(1)l. So, if we choose s € § and sum over orb(s), we have

E |S(ab(;(’)l - IOI’bG(S)I IstabG(S)l — IG‘ (3)
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Finally, by summing over all the elements of G, one orbit at a time, it
follows from Equations (1), (2), and (3) that

2 Ifix(¢)| = 2|slab6(i)| = |G|+ (number of orbits)
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and the result follows.



Solving our problem by this theory:

We have considered two kinds of necklaces. In first kind there are 4
beads and two of them coloured red, other two are black; In second
kind 4 beads and all of them can be coloured either red or black. By
design fixed by an operation we mean number of designs which
remains identical by the operation. Different group operations and
number of design fixed by the operations in both cases have been
noted in the following table.

Identity O degree 6 16
rotation

90 degree rotation 0 2
180 degree rotation 2 4
270 degree rotation 0 2
Horizontal reflection 2 4
Vertical reflection 2 4
15t diagonal reflection 2 8
2"d diagonal reflection 2 8
Total 16 48

Number of classes 2 6



Number of classes are the number of designs that are needed to
reach all possible design.

Calculation details by Burnside Theorem:

For the first case, %(6+0+2+0+2+2+2+2)= §=2
For the second case, %(16+2+4+2+4+4+8+
48

8)=? 6

By application of Burnside theorem we can find the minimum
number of different design that is needed to reach all other design in
similar kind of problems.



