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Pointwise vs Continuous

Outline

Pointwise and continuous interpretations

First-Order logic with linear constraints

From continuous to pointwise.

Eliminating a single top-level passive quantifier
Eliminating all passive quantifiers.

Future directions.



Pointwise vs Continuous

Timed words

Timed words [Alur and Dill] are a popular model of real-time
behaviours.
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a b bb b

Similar to classical word but each action has a time-stamp.

Assumption: Time-stamps are progressive.
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Quantitative Temporal Logics

Metric Temporal Logic (MTL) [Koymans 1992,
Alur-Feder-Henzinger 1996, Ouaknine-Worrell 2005]

aUb “there is a future timepoint at which a b occurs, and till
then a occurs.”
aUIb “... and the timepoint lies at a distance which lies in the
interval I .”
♦ϕ ≡ trueUϕ: “eventually ϕ.”
♦Iϕ ≡ trueUIϕ: “eventually ϕ at a distance that lies in I .”

Timed Propositional Temporal Logic (TPTL) [Alur-Henzinger
1994].

♦x .(♦y .(a ∧ y = x + 1)): “There is a future timepoint x and a
subsequent timepoint y at which an a occurs and y = x + 1.”
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Pointwise vs Continuous

Pointwise vs continuous semantics

Two natural interpretations:

Pointwise: quantification is over action timepoints in timed
word.

Continuous: quantification is over arbitrary timepoints in
timed word.

Consider MTL assertion ♦(♦[1,1]a) “Eventually there is a timepoint
from which we have an action a at distance 1,” on timed word
below:
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a b bb b

False in pointwise semantics but True in continuous semantics.
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Typically pointwise less expressive than continuous

Pointise MTL is less expressive than Continuous MTL.

Property “no insertions” can be expressed in continuous MTL

but not pointwise MTL.
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Also true for other variants of MTL (MTLS , MTLSI
, MITL).

What about TPTL?
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First-Order Logic of linear constraints

Expressively same as TPTL with “Since” operator.

Interpreted over timed words.

a(x): “timepoint x has an a action.”

x ∼ y + c where ∼ is in {<,≤,=,≥, >}.

Boolean combinations: ¬, ∧, ∨.

First-order quantification: ∃xϕ.



Pointwise vs Continuous

Semantics of FO(<,+)

Interpreted over timed words.

∃x interpreted as

“there exists an action point x” (pointwise).
“there exists a timepoint x” (continuous).

Example sentence: ∃x∃y(a(y) ∧ y = x + 1).
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Sentence is False in pointwise semantics but True in continuous
semantics.
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What we show

For a FO(<,+) sentence ϕ:

Lpw (ϕ) = set of timed words that satisfy ϕ in pointwise
semantics.

Lc(ϕ) = set of timed words that satisfy ϕ in continuous
semantics.

Theorem

The class of timed languages definable in FO(<,+) in the

pointwise and continuous semantics coincide.



Pointwise vs Continuous

Easy Part: From FO
pw (<,+) to FO

c(<,+)

Given ϕ, find ϕ′ such that Lpw (ϕ) = Lc(ϕ′).
Replace

∃xψ

by

∃x(
∨

a∈Σ

a(x) ∧ ψ′).
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Difficult Part: From FO
c(<,+) to FO

pw (<,+)

Given FO
c(<,+) sentence:

∃x(¬a(x) ∧ 0 ≤ x ≤ 1 ∧ ∃y(b(y) ∧ y = x + 1))
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A possible equivalent FO
pw (<,+) formula is:

∃y(b(y) ∧ 1 ≤ y ≤ 2 ∧ ¬∃x(a(x) ∧ y = x + 1)).

Raveendra Holla
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Main idea

Go from an FO
c(<,+) sentence ϕ to an equivalent actively

quantified FO
c(<,+) sentence ϕ′.

Observe that if ϕ′ is actively quantified, then
Lc(ϕ′) = Lpw (ϕ′).

So ϕ′ could be an equivalent FO
pw (<,+) sentence.
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Main steps

First put ϕ in a normal form.

Show how to eliminating a single top-level passive quantifier.

Eliminate all passive quantifiers step by step.
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Normal form for FO(<,+) sentences

Normal form: Boolean combination of sentences in ∃-normal
form.

Example formula in ∃-normal form:

0 ≤ x ≤ 1

¬∃z∃y

x < y b(z) x < za(y)

∧

∧ ∧

∃x

∧
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Procedure to convert to normal form

1 Push ¬’s downward till ∃-nodes or a(x)-nodes.

2 Pull ∨’s upward (eg. ∃x(α ∨ β) ≡ (∃xα) ∨ (∃yβ)).

3 Replace a(x) ∧ b(x) by false if a 6= b.

4 Replace ∃x(¬a(x) ∧ π(x) ∧ α) by ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4.

∨

∧ ¬

∃x

g(w)

∃y

∃z

∧

g(y)

g(x)

b(z) g(z)

∧

a(x)

¬∃w

∧

∧



Pointwise vs Continuous

Procedure to convert to normal form

Replace ∃x(¬a(x) ∧ π(x) ∧ α) by ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4, where:

ψ1 = ¬∃x(a(x) ∧ π(x)) ∧ ∃x(π(x) ∧ α).

ψ2 = ∃xl(a(xl) ∧ π[xl/x ] ∧ ¬∃x ′(a(x ′) ∧ π[x ′/x ] ∧ x ′ <
xl) ∧ ∃x(π(x) ∧ x < xl ∧ α)).

Similarly ψ3, ψ4.

π π

π

a a a a

x

π

a a aa a

x

a a a

x

a a aa

x
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Eliminating a single top-level passive quantifier

0 ≤ x ≤ 1

∧

∃y

∧

∃x

a(y) x + 1 ≤ y ≤ x + 1.2

case 1

0 ≤ x ≤ 1

∧

¬∃y

∧

∃x

a(y) x + 1 ≤ y ≤ x + 1.2

case 2

¬∃y

∧

∧

∃x

0 ≤ x ≤ 1

x + 1 ≤ y ≤ x + 1.2a(y) b(z) x +

∧

∃z

case 3
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Eliminating a single top-level passive quantifier: case 1
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0 ≤ x ≤ 1

∧

∃y

∧

∃x

a(y) x + 1 ≤ y ≤ x + 1.2
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Eliminating a single top-level passive quantifier: case 1
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0 ≤ x ≤ 1

∧

∃y

∧

∃x

a(y) x + 1 ≤ y ≤ x + 1.2

a(y)

∧

∃x

∧

∃y

0 ≤ x ≤ 1 x + 1 ≤ y ≤ x + 1.2
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Eliminating a single top-level passive quantifier: case 1
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0 ≤ x ≤ 1

∧

∃y

∧

∃x

a(y) x + 1 ≤ y ≤ x + 1.2

a(y)

∧

∃x

∧

∃y

0 ≤ x ≤ 1 x + 1 ≤ y ≤ x + 1.2

a(y)

∧

∃y

1 ≤ y ≤ 2.2
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Eliminating a single top-level passive quantifier: case 1
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0 ≤ x ≤ 1

∧

∃y

∧

∃x

a(y) x + 1 ≤ y ≤ x + 1.2

a(y)

∧

∃x

∧

∃y

0 ≤ x ≤ 1 x + 1 ≤ y ≤ x + 1.2

a(y)

∧

∃y

1 ≤ y ≤ 2.2

Interval constraint for x : (0 ≤ x ∧ y − 1.2 ≤ x) ∧ (x ≤ 1∧ x ≤ y − 1).
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Final step: Eliminating all passive quantifiers

Given an FO
c(<,+) sentence ϕ:

1 Convert to normal form.
2 While there is a passive quantifier node, repeat:

Pick a minimal such node.
Pull up ∨′s in its subtree (if any)
Now each disjunct is in ∃-normal form with single top-level
passive quantifier. Eliminate this quantifer to get a disjunction
of formulas in active normal form.

∃x

∃y
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Summary

Shown how to convert an FO
c(<,+) sentence to an

equivalent actively quantified one.

Gives us equivalence of pointwise and continuous semantics of
FO(<,+).

Equivalence of pointwise and continuous semantics of TPTLS

follows.

Some open questions:

Compexity?!
What about TPTL (without “Since”)?


