A Clock-Optimal Hierarchical Monitoring Automaton for MITL

Deepak D'Souza and Raj Mohan M

Computer Science and Automation Indian Institute of Science, Bangalore.

Contribution

A formula automaton construction for Metric Interval Temporal Logic (MITL):

- Uses Hierarchical Timed Buchi Automata
- More efficient in use of clocks than earlier constructions
- Optimal use of clocks

Metric Temporal Logic

Models are timed words:

- Interpreted in continuous time.
- Syntax is given by:

$$\varphi ::= a \mid \varphi_1 U_1 \varphi_2 \mid \varphi_1 S_1 \varphi_2 \mid boolean combinations.$$

where

- $a \in \Sigma$.
- *I* is an interval like [2, 3], (1, 2.4], etc.

Semantics of U_I

Consider truth of a formula φ along the time word as shown below:

The formula $\varphi U_{[1,3]} \neg \varphi$ is true at 1.8.

Semantics of MTL Contd

Derived operator:

 $\diamondsuit_{[1,2]}b$ is true at 1.5.

0000

Metric Interval Temporal Logic

- Introduced by Alur, Feder and Henzinger [JACM 1996]
- Fragment of MTL in which the intervals are restricted to non-singular intervals.
- Formulas such as

$$\psi_1 U_{[2,2]} \psi_2$$

are not allowed in MITL.

Formula Automaton for MITL

- Key to solving model checking and satisfiability problems for MITL.
- Formula automaton for φ accepts exactly the set of models of φ .
- Given a system $\mathcal T$ and a formula φ the model checking problem can be rephrased as whether

$$L(\mathcal{T}) \cap L(\mathcal{A}_{\neg \varphi}) = \emptyset$$
,

where $\mathcal{A}_{\neg \varphi}$ is a formula automaton for $\neg \varphi$.

Hierarchical Timed Büchi Automaton

- We give an inductive monitoring automaton construction for MITL in terms of Hierarchical Timed Büchi Automaton (HTBA).
- An HTBA is a list $[C_n, ..., C_1]$ of automata where each of the C_i 's is an *edge timed Büchi automaton*.

Edge Timed Büchi Automaton

An edge timed Büchi automaton is similar to a timed Büchi automaton but initial edges and final edges.

	Final	Non-Final
Initial	-	
Non-Initial		

An example timed word σ and the run ρ of \mathcal{A} over σ .

Hierarchical Timed Büchi Automaton

An HTBA
$$\mathcal{H} = [C_2, C_1]$$
.

$$C_{2} \qquad q \qquad r$$

$$d_{1}:\mathcal{B}_{1}.e_{1},\{x\}$$

$$d_{2}:(x=1) \land \mathcal{B}_{1}.e_{2}$$

$$C_{1} \qquad p$$

$$e_{1}:a$$

$$e_{2}:b$$

- In general an HTBA is a list $[C_n, \ldots, C_1]$ of automata.
- Automaton C_i can only refer to edges, clocks and states of the automata C_{i-1}, \ldots, C_1 , hence the list is hierarchical.

Run of HTBA

The run of \mathcal{H} over $(a, .5)(b, 1.5)(a, 2.4)(b, 3.4)(a, 4) \cdots$ is

Monitoring Automaton

- A monitoring automaton for an MITL formula is an automaton which monitors the truth of the formula along its run over every timed word.
- An important tool for verification as one can build a formula automaton from it.

Properties of a Monitoring Automaton:

- A monitoring automaton is universal, i. e. it accepts all the timed words.
- A monitoring automaton is unambiguous, i. e. for every infinite timed word it has a unique accepting run over it.

Construction: Monitoring HTBA for $\diamondsuit \psi$

Let $(\mathcal{H}_{\psi}, g_{\psi})$ be the monitoring automaton for ψ . Then $([C, \mathcal{H}_{\psi}], C.(f_1 \vee f_2 \vee \bigvee_{i=1}^6 e_i) \vee C.(p \vee q))$ is a monitoring automaton for $\diamondsuit \psi$.

Monitoring Automata Constructions

Construction for $\diamondsuit_l \psi$: Example $\diamondsuit_{(2,3)} \psi$

Relationship between the characteristic functions of ψ and $\diamondsuit_{(2,3)}\psi$ along a timed word.

Construction (Sketch): Example $\diamondsuit_{(2,3)}\psi$

We use two automata for monitoring the formula $\diamondsuit_{(2,3)}\psi$: the first guesses the intervals in which the formula is false by resetting the clocks $(x_i \text{ and } y_i)$ and the second one verifies those guesses (using clock z and state information).

Clock Optimal for $\diamondsuit_l \psi$: Proof Sketch

- In the inductive step for monitoring automaton construction for \$\(\chi_{(I,r)}\psi\$ we use an optimal (2 * \(\begin{align*} I/(r-I)\eta + 1\) number of clocks.
- Consider the following timed word.

$$\forall i \in \mathbb{N}, \ t_{2i+1} - t_{2i} = \epsilon.$$

$$∀i ∈ \mathbb{N}, t_{2i+2} - t_{2i+1} = r - l + ε.$$

Clock Optimality Contd

• At every time point $t \in (t_i - l, t_i)$ at least a clock is "tied" to the point $t_i - l$.

- No clock can be "tied" to two different points.
- There exists a point such that $2 * \lceil I/(r-I) \rceil + 1$ clocks are "tied".
- Our construction is clock-optimal.

Clock Optimality

- Our construction for the inductive step uses at most $2 * \lceil I/(r-I) \rceil + 1$ clocks.
- Previous constructions for monitoring TBA for the formulas of these forms use at least $2 * \lceil l/(r-l) \rceil + 2$ clocks.
- Similarly we also use an optimal number of clocks in the inductive step for monitoring automaton construction for ⇔_Iψ.

Clock Optimality

Thank You.