Commonly Knowing Whether

J. Fan¹² D. Grossi³⁴ B. Kooi³ X. Su³ R. Verbrugge³

¹Institute of Philosophy, Chinese Academy of Sciences, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³University of Groningen, Groningen, Netherlands

⁴University of Amsterdam, Amsterdam, Netherlands

March 4, 2021

Outline

- 1 The Concept of Commonly Knowing Whether
- 2 Logical Relations Among Alternative Definitions
- 3 Axiomatization $\mathbb{C}w\mathbb{S}5$
- 4 Expressivity of Cw₅

• Beyond 'knowing that' $(K_i\varphi)$

- Beyond 'knowing that' $(K_i\varphi)$
 - knowing whether
 - knowing how
 - knowing why
 - knowing who

- Beyond 'knowing that' $(K_i\varphi)$
 - knowing whether
 - knowing how
 - knowing why
 - knowing who
- Knowing whether: $Kw_i\varphi =_{def} K_i\varphi \vee K_i\neg\varphi$

- Beyond 'knowing that' $(K_i\varphi)$
 - knowing whether
 - knowing how
 - knowing why
 - knowing who
- Knowing whether: $Kw_i\varphi =_{def} K_i\varphi \vee K_i\neg\varphi$
 - Describing agent's certainty.

- Beyond 'knowing that' $(K_i\varphi)$
 - knowing whether
 - knowing how
 - knowing why
 - knowing who
- Knowing whether: $Kw_i\varphi =_{def} K_i\varphi \vee K_i\neg\varphi$
 - Describing agent's certainty.
 - Specifying preconditions for actions.

- Beyond 'knowing that' $(K_i\varphi)$
 - knowing whether
 - knowing how
 - knowing why
 - knowing who
- Knowing whether: $Kw_i\varphi =_{def} K_i\varphi \vee K_i\neg\varphi$
 - Describing agent's certainty.
 - Specifying preconditions for actions.
 - Non-contingency.

Everyone Knowing Whether

Common knowledge :
$$C\varphi:=E\varphi\wedge EE\varphi\wedge EEE\varphi\wedge\cdots$$

Commonly knowing whether: ?

Everyone Knowing Whether

Common knowledge :
$$C\varphi:=E\varphi\wedge EE\varphi\wedge EEE\varphi\wedge\cdots$$

Commonly knowing whether: ?

- A preparation: the notion of everyone knowing whether.
 - $Ew_1\varphi := E\varphi \vee E\neg \varphi$
 - $Ew_2\varphi := \bigwedge_{i \in G} Kw_i\varphi$.

Everyone Knowing Whether

Common knowledge :
$$C\varphi:=E\varphi\wedge EE\varphi\wedge EEE\varphi\wedge\cdots$$

Commonly knowing whether: ?

- A preparation: the notion of everyone knowing whether.
 - $Ew_1\varphi := E\varphi \vee E\neg \varphi$
 - $Ew_2\varphi := \bigwedge_{i \in G} Kw_i\varphi$.
- Over K-frames, $\models Ew_1\varphi \to Ew_2\varphi$.
- Over \mathcal{T} -frames, $\models Ew_1\varphi \leftrightarrow Ew_2\varphi$.

•
$$Cw_1\varphi := C\varphi \lor C\neg \varphi$$

- $Cw_1\varphi := C\varphi \vee C\neg \varphi$
- $Cw_2\varphi := CEw_{\varphi} (Cw_{21}\varphi := CEw_1\varphi \text{ and } Cw_{22}\varphi := CEw_2\varphi)$

- $Cw_1\varphi := C\varphi \vee C\neg \varphi$
- $Cw_2\varphi := CEw_{\varphi} (Cw_{21}\varphi := CEw_1\varphi \text{ and } Cw_{22}\varphi := CEw_2\varphi)$
- $Cw_3\varphi := Ew\varphi \wedge EwEw\varphi \wedge EwEwEw\varphi \wedge \cdots (Cw_{31}\varphi \text{ and } Cw_{32}\varphi)$

- $Cw_1\varphi := C\varphi \vee C\neg \varphi$
- $Cw_2\varphi := CEw_{\varphi} (Cw_{21}\varphi := CEw_1\varphi \text{ and } Cw_{22}\varphi := CEw_2\varphi)$
- $Cw_3\varphi := Ew\varphi \wedge EwEw\varphi \wedge EwEwEw\varphi \wedge \cdots (Cw_{31}\varphi \text{ and } Cw_{32}\varphi)$
- $Cw_4\varphi := \bigwedge_{i \in \mathbf{G}} (CKw_i\varphi \vee C\neg Kw_i\varphi)$

- $Cw_1\varphi := C\varphi \vee C\neg \varphi$
- $Cw_2\varphi := CEw_{\varphi} (Cw_{21}\varphi := CEw_1\varphi \text{ and } Cw_{22}\varphi := CEw_2\varphi)$
- $Cw_3\varphi := Ew\varphi \wedge EwEw\varphi \wedge EwEwEw\varphi \wedge \cdots (Cw_{31}\varphi \text{ and } Cw_{32}\varphi)$
- $Cw_4\varphi := \bigwedge_{i \in \mathbf{G}} (CKw_i\varphi \vee C\neg Kw_i\varphi)$
- $Cw_5\varphi := \bigwedge_{i,j,k,\dots \in \mathbf{G}} (Kw_i\varphi \wedge Kw_jKw_i\varphi \wedge Kw_jKw_kKw_i\varphi \wedge \dots)$

Logical Relations over K and KD45-frames

Theorem

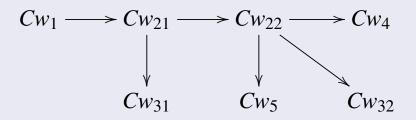


Figure 1: Over K and KD45-frames

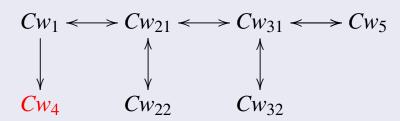


Figure 2: Over T and S5-frames

Axiomatization $\mathbb{C}w\mathbb{S}5$

Definition

We fix a denumerable set of propositional atoms P and a nonempty finite set of agents G. The language Cw can be defined by the following BNF:

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \wedge \varphi) \mid Kw_i \varphi \mid Cw \varphi,$$

where $p \in P$ and $i \in G$.

Axiomatization $\mathbb{C}w\mathbb{S}5$

Definition

We fix a denumerable set of propositional atoms P and a nonempty finite set of agents G. The language Cw can be defined by the following BNF:

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid Kw_i \varphi \mid Cw \varphi,$$

where $p \in P$ and $i \in G$.

Definition

$$\mathcal{M}, w \vDash Kw_i\varphi \text{ iff } \mathcal{M}, w \vDash K_i\varphi \text{ or } \mathcal{M}, w \vDash K_i\neg\varphi.$$

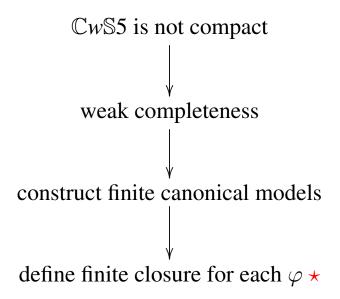
$$\mathcal{M}, w \vDash Cw\varphi \text{ iff } \mathcal{M}, w \vDash C\varphi \text{ or } \mathcal{M}, w \vDash C\neg\varphi.$$

Axiomatization $\mathbb{C}w\mathbb{S}5$

```
(TAUT) All instances of tautologies
(Kw-DIS) Kw_i\varphi \to Kw_i(\varphi \to \psi) \lor Kw_i(\neg \varphi \to \chi)
(Kw-CON) Kw_i(\chi \to \varphi) \land Kw_i(\neg \chi \to \varphi) \to Kw_i\varphi
(Kw-T) Kw_i\varphi \wedge Kw_i(\varphi \rightarrow \psi) \wedge \varphi \rightarrow Kw_i\psi
(wKw-5) \quad \neg Kw_i \varphi \rightarrow Kw_i \neg Kw_i \varphi
(Kw \rightarrow Kw_i \varphi \leftrightarrow Kw_i \neg \varphi)
(Cw-DIS) Cw\varphi \to Cw(\varphi \to \psi) \lor Cw(\neg \varphi \to \chi)
(Cw-CON) Cw(\chi \to \varphi) \land Cw(\neg \chi \to \varphi) \to Cw\varphi
(Cw \rightarrow Cw \varphi \leftrightarrow Cw \neg \varphi)
(Cw-T) Cw\varphi \wedge Cw(\varphi \rightarrow \psi) \wedge \varphi \rightarrow Cw\psi
(Cw-Ind) Cw(\varphi \to Ew\varphi) \to (\varphi \to Cw\varphi)
(Cw-Mix) Cw\varphi \to Ew\varphi \land EwCw\varphi
(Kw-NEC) from \varphi infer Kw_i\varphi
(C-NEC)
                   from \varphi infer Cw\varphi
(Kw-RE)
                   from \varphi \leftrightarrow \psi infer Kw_i\varphi \leftrightarrow Kw_i\psi
(Cw-RE)
                   from \varphi \leftrightarrow \psi infer Cw\varphi \leftrightarrow Cw\psi
(MP)
                    from \varphi and \varphi \to \psi infer \psi
```

Completeness

The basic idea of the completeness proof:



Theorem

The logic $\mathbb{C}w\mathbb{S}5$ is weakly complete with respect to $\mathbb{S}5$.

• Focus on $Cw_5 := \bigwedge_{i,j,k,\dots \in G} (Kw_i \varphi \wedge Kw_j Kw_i \varphi \wedge Kw_j Kw_k Kw_i \varphi \wedge \dots)$

- Focus on $Cw_5 := \bigwedge_{i,j,k,\dots \in G} (Kw_i \varphi \wedge Kw_j Kw_i \varphi \wedge Kw_j Kw_k Kw_i \varphi \wedge \dots)$
 - inter-'knowing whether'

- Focus on $Cw_5 := \bigwedge_{i,j,k,\dots \in G} (Kw_i \varphi \wedge Kw_j Kw_i \varphi \wedge Kw_j Kw_k Kw_i \varphi \wedge \dots)$
 - inter-'knowing whether'
- Compare the expressivity of Cw_5 with C:

$$\mathbf{Cw}_{5} \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid Kw_{i}\varphi \mid Cw_{5}\varphi$$

$$\mathbf{C} \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{i}\varphi \mid C\varphi$$

- Focus on $Cw_5 := \bigwedge_{i,j,k,\dots \in G} (Kw_i \varphi \wedge Kw_j Kw_i \varphi \wedge Kw_j Kw_k Kw_i \varphi \wedge \dots)$
 - inter-'knowing whether'
- Compare the expressivity of Cw_5 with C:

$$\mathbf{Cw}_{5} \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid Kw_{i}\varphi \mid Cw_{5}\varphi$$

$$\mathbf{C} \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{i}\varphi \mid C\varphi$$

$$Kw_{i}\varphi = K_{i}\varphi \vee K_{i}\neg\varphi \qquad \qquad Cw_{5}\varphi = Kw_{i}\varphi \wedge Kw_{j}Kw_{i}\varphi \wedge \cdots$$

$$guess$$

Cw₅ can be expressed by C

- Focus on $Cw_5 := \bigwedge_{i,j,k,\dots \in G} (Kw_i \varphi \wedge Kw_j Kw_i \varphi \wedge Kw_j Kw_k Kw_i \varphi \wedge \dots)$
 - inter-'knowing whether'
- Compare the expressivity of Cw_5 with C:

$$\mathbf{Cw}_{5} \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid Kw_{i}\varphi \mid Cw_{5}\varphi$$

$$\mathbf{C} \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_{i}\varphi \mid C\varphi$$

$$Kw_{i}\varphi = K_{i}\varphi \vee K_{i}\neg\varphi - Cw_{5}\varphi = Kw_{i}\varphi \wedge Kw_{j}Kw_{i}\varphi \wedge \cdots$$

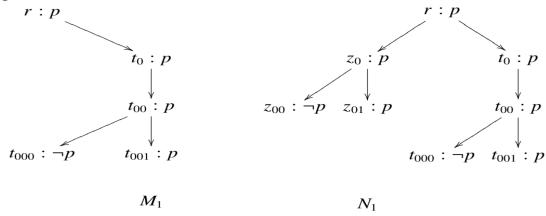
$$guess$$

 $\mathbf{C}\mathbf{w}_5$ can be expressed by \mathbf{C}

No!

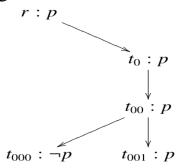
Distinguish two series of models: ${\mathcal M}$ and ${\mathcal N}$

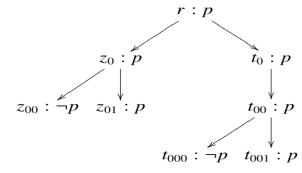
Distinguish two series of models: ${\mathcal M}$ and ${\mathcal N}$

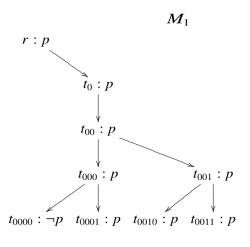


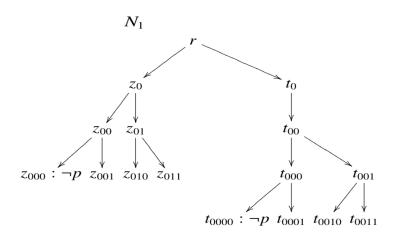
Expressivity of Cw_5

Distinguish two series of models: $\mathcal M$ and $\mathcal N$









• No C-formula can distinguish between \mathcal{M} and \mathcal{N} .

- No C-formula can distinguish between \mathcal{M} and \mathcal{N} .
- Kw_iCw_5p can distinguish between \mathcal{M} and \mathcal{N} .

- No C-formula can distinguish between \mathcal{M} and \mathcal{N} .
- Kw_iCw_5p can distinguish between \mathcal{M} and \mathcal{N} .

Lemma

1 Over K, Cw_5 is not weaker in expressivity than C.

- No C-formula can distinguish between \mathcal{M} and \mathcal{N} .
- Kw_iCw_5p can distinguish between \mathcal{M} and \mathcal{N} .

Lemma

- **1** Over K, Cw_5 is not weaker in expressivity than C.
- **2** Over K, Cw_5 and C are incomparable in expressivity.

Conclusions

- Five possible notions of 'commonly knowing whether';
- 2 On S5-frames four of the five notions boil down to the same thing;
- **3** Soundness and weak completeness of $\mathbb{C}w\mathbb{S}5$ over $\mathcal{S}5$ -frames;
- Over K, Cw_5 and C are incomparable in expressivity.